
HTML5
and JavaScript
Projects

Build on your Basic Knowledge of HTML5
and JavaScript to Create Substantial HTML5
Applications
—
Second Edition
—
Jeanine Meyer

www.allitebooks.com

http://www.allitebooks.org

Jeanine Meyer

HTML5 and JavaScript
Projects

Build on your Basic Knowledge of
HTML5 and JavaScript to Create
Substantial HTML5 Applications

Second Edition

www.allitebooks.com

http://www.allitebooks.org

HTML5 and JavaScript Projects

ISBN-13 (pbk): 978-1-4842-3863-9				 ISBN-13 (electronic): 978-1-4842-3864-6
https://doi.org/10.1007/978-1-4842-3864-6

Library of Congress Control Number: 2018954635

Copyright © 2018 by Jeanine Meyer

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar

Cover image designed by Mattia Serrani on Unsplash

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484238639. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Jeanine Meyer
New York, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3864-6
http://www.allitebooks.org

To my family, including my parents, who still take care of me

www.allitebooks.com

http://www.allitebooks.org

v

Table of Contents

Chapter 1: �Building the HTML5 Logo: Drawing on Canvas with Scaling
and Semantic Tags��� 1

Introduction�� 1

Project History and Critical Requirements��� 4

HTML5, CSS, and JavaScript features�� 6

Drawing Paths on Canvas��� 6

Placing Text on Canvas and in the Body of a Document��� 9

Coordinate Transformations��� 10

Using the Range Input Element�� 12

Building the Application and Making It Your Own�� 14

Testing and Uploading the Application��� 21

Summary��� 21

Chapter 2: �Family Collage: Manipulating Programmer-Defined
Objects on a Canvas��� 23

Introduction�� 23

Critical Requirements�� 26

Autoplay Policy��� 26

HTML5, CSS, and JavaScript Features��� 27

JavaScript Objects�� 27

User Interface��� 46

About the Author�� xi

About the Technical Reviewer�� xiii

Acknowledgments��xv

Introduction��xvii

www.allitebooks.com

http://www.allitebooks.org

vi

Saving the Canvas to an Image�� 51

Building the Application and Making It Your Own�� 52

Testing and Uploading the Application��� 77

Summary��� 77

Chapter 3: �Bouncing Video: Animating and Masking HTML5 Video������������������������� 79

Introduction�� 79

Project History and Critical Requirements��� 86

HTML5, CSS, and JavaScript Features��� 87

Definition of the Body and the Window Dimensions��� 87

Animation��� 89

Video Drawing Frames on Canvas or As a Movable Element��� 95

Traveling Mask��� 98

User Interface��� 101

Building the Application and Making It Your Own�� 102

Making the Application Your Own��� 115

Testing and Uploading the Application��� 116

Summary��� 117

Chapter 4: �Map Maker: Combining Google Maps and the Canvas������������������������ 119

Introduction�� 119

Latitude and Longitude and Other Critical Requirements�� 131

HTML5, CSS, and JavaScript Features��� 137

The Google Maps API�� 137

Canvas Graphics��� 140

Cursor��� 144

JavaScript Events��� 145

Calculating Distance and Rounding Values for Display�� 150

Building the Application and Making It Your Own�� 152

Testing and Uploading the Application��� 165

Summary��� 165

Table of Contents

vii

Chapter 5: �Map Portal: Using Google Maps to Access Your Media������������������������ 167

Introduction�� 167

Project History and Critical Requirements��� 175

HTML5, CSS, and JavaScript Features��� 176

Google Maps API for Map Access and Event Handling��� 176

Project Content in External File�� 179

Distances and Tolerances��� 181

Regular Expressions Used to Create the HTML�� 182

Dynamic Creation of HTML5 Markup and Positioning�� 183

Hint Button�� 186

Building the Application and Making It Your Own�� 187

The Quiz Application��� 187

Testing and Uploading the Application��� 201

Summary��� 201

Chapter 6: �Add to 15 Game�� 203

Introduction�� 203

General Requirements for a Game��� 205

HTML5, CSS, and JavaScript�� 206

Styling in CSS��� 206

JavaScript Arrays��� 207

Setting Up the Game��� 209

Responding to a Player Move��� 209

Generating the Computer Move�� 210

Building the Application and Making It Your Own�� 211

Testing and Uploading the Application��� 221

Summary��� 221

Table of Contents

viii

Chapter 7: �Origami Directions: Using Math-Based Line Drawings,
Photographs, and Videos��� 223

Introduction�� 223

Critical Requirements�� 233

HTML5, CSS, JavaScript Features, and Mathematics�� 234

Overall Mechanism for Steps��� 234

User Interface��� 238

Coordinate Values��� 238

Utility Functions for Display�� 240

Utility Functions for Calculation�� 243

Step Line Drawing Functions�� 245

Displaying a Photograph��� 254

Presenting and Removing a Video�� 254

Building the Application and Making It Your Own�� 255

Testing and Uploading the Application��� 288

Summary��� 289

Chapter 8: �Jigsaw Video�� 291

Introduction�� 291

Background and Critical Requirements��� 297

HTML5, CSS, JavaScript, and Programming Features�� 297

Creating the Base Picture��� 298

Dynamically Created Elements��� 298

Setting Up the Game��� 300

Handling Player Actions�� 301

Calculating If the Puzzle Is Complete��� 304

Preparing, Positioning, and Playing the Video and Making It Hidden or Visible�������������������� 305

Building the Application and Making It Your Own�� 306

Testing and Uploading the Application��� 318

Summary��� 318

Table of Contents

ix

Chapter 9: �US States Game: Building a Multiactivity Game����������������������������������� 321

Introduction�� 321

Critical Requirements�� 332

HTML5, CSS, JavaScript Features, Programming Techniques, and Image Processing�������������� 333

Acquiring the Image Files for the Pieces and Determining Offsets������������������������������������� 333

Creating Elements Dynamically�� 341

User Interface Overall��� 342

User Interface for Asking the Player to Click a State�� 343

User Interface for Asking the Player to Name a State�� 344

Spreading Out the Pieces��� 346

Setting Up the Jigsaw Puzzle��� 347

Saving and Recreating the State of the Jigsaw Game and Restoring the Original Map������� 349

Building the Application and Making It Your Own�� 353

Testing and Uploading the Application��� 374

Summary��� 374

Chapter 10: �Responsive Design and Accessibility��� 375

Introduction�� 375

Critical Requirements�� 380

Screen Size and Dimension�� 381

Touch�� 381

Screen Reader and Tabs��� 381

HTML, CSS, and JavaScript Features��� 382

Meta Tags��� 382

HTML and CSS Use of Percentages and Auto��� 383

CSS @media��� 384

The HTML alt Attribute and Semantic Elements��� 384

HTML tabIndex�� 385

JavaScript Use of Width and Height Properties�� 385

Creating Elements Dynamically�� 386

Choosing From List��� 387

Mouse Events, Touch Events, and Key Events�� 388

Table of Contents

x

Building the Reveal Application and Making It Your Own��� 390

Testing and Uploading the Reveal Application�� 404

Building the Countries/Capitals Quiz and Making It Your Own��� 404

Testing and Uploading the Countries/Capitals Quiz Application��� 414

Testing and Uploading the Jigsaw Turning to Video Application�� 414

Summary��� 415

Index�� 417

Table of Contents

xi

About the Author

Jeanine Meyer is a full professor at Purchase College/State

University of New York. She teaches courses to students

majoring in mathematics/computer science and also enjoys

the frequent presence of others in her classes, including new

media, music, dance, economics, and chemistry majors. She

developed and teaches courses satisfying the mathematics

general education requirement, including one on math in

the news and one on origami. The website for her academic

activities is http://faculty.purchase.edu/jeanine.meyer.

Before coming to academia, she was a research staff member and manager at IBM

Research, focusing on robotics and manufacturing research, and she later worked on the

corporate manufacturing staff and as a research consultant at IBM for educational grant

programs.

She has enjoyed working with Apress, including updating the HTML5 books. She

continues with the practice of building programming examples using media featuring

her family and her activities and hopes that inspires readers to create work on topics that

are important to them. Her hobbies and interests include studying Spanish and piano,

playing computer games, doing origami, and volunteering for progressive candidates

and causes. She enjoys her daughter Aviva’s cooking while doing some baking herself

and looks forward to travel this year.

http://faculty.purchase.edu/jeanine.meyer

xiii

About the Technical Reviewer

Takashi Mukoda is an international student at Purchase

College/State University of New York. He is currently taking

a semester off and back home in Japan. At Purchase College,

he majors in Mathematics/Computer Science and New

Media and has worked as a teaching assistant for computing

and mathematics courses.

Takashi likes playing the keyboard and going on hikes in

the mountains to take pictures. His interest in programming

and art motivates him to create multimedia art pieces. Some

of them are built with Processing and interact with human

motion and sounds.

(See his website at http://www.takashimukoda.com.)

http://www.takashimukoda.com/

xv

Acknowledgments

Much appreciation to my students and colleagues at Purchase College/State University

of New York. In particular, for Chapter 5, which covers the map portal quiz, I want to

thank Jennifer Douglas, Jeremy Martinez, and Nik Dedvukaj, for the maze video clip

produced in my Robotics class in 2008, which I retained for the new edition. I want also

to thank Takashi Mukoda for his photograph of the Great Torii, in addition to everything

else he has contributed to this and other projects. I re-used an audio recording of my

mother playing piano. Thanks to all my family members (Aviva Meyer, Daniel Meyer,

Annika Meyer, Anne Kellerman, Palmer Agnew, Debbie Torres, and Joshua Torres) for

being the subjects of photographs and videos and for making the photos, video, and

audio. Thanks to Daniel Davis for his HTML5 logo and his technical assistance with the

first edition.

Thanks to the crew at Apress, including Nancy Chen, James Markham, and the

technical reviewer Takashi Mukoda, as well as others I do not know by name.

xvii

Introduction

This book continues my exploration of HTML5. My approach in developing the projects

was to combine features such as canvas and video, attempt more intricate drawing by

using mathematics, and use standard programming techniques such as object-oriented

programming and separation of content and logic. I was also interested in building

applications combining HTML5 and JavaScript with other technologies, including

Google Maps.

Each chapter in the book is focused on an application or set of related applications.

This is because my experience as a teacher and a learner has shown that concepts

and mechanics are best understood in the context of actual use. The applications start

off with drawing the HTML5 official logo. As you will find out in Chapter 1, the way I

developed this application prompted use of coordinate transformations.

The project in Chapter 2, involving a family collage, was inspired by my growing

family and the desire to teach about object-oriented programming. It is a good

application for you to use as a foundation to create your own, with your own photos

and objects of your own invention. Chapter 3, which shows how to create a bouncing

video, was built on other two-dimensional applications I have created, and features two

different ways to combine canvas and video.

Chapters 4 and 5 demonstrate use of the Google Maps API (Application

Programming Interface), a powerful facility that allows you to incorporate access

to Google Maps as part of your own projects. Chapter 4 presents a user interface

combining map and canvas and includes a custom-designed cursor and the use of alpha

(transparency) in drawing paths. The map quiz in Chapter 5 demonstrates the use of

mapping as a portal to media. The application shows you how to separate content and

logic so you can scale up to various applications (e.g., a tour of a region or a geography

quiz with many locations).

Chapter 6 features a game called Add to 15, which turned out to be an excellent

example of arrays. It also demonstrated the necessity to prepare for bad behavior on the

part of players.

xviii

In Chapter 7, I use the task of producing directions for origami to show how

to combine line drawings, often using mathematical expressions, and video and

photographs. You can use this as a model for your own set of directions for a task in

which drawings, video, or images would be most appropriate. Or you can let the reading

refresh your memory for topics in algebra and geometry. Chapter 8 features a jigsaw

puzzle that is transformed into a video when it’s completed. Chapter 9 is an educational

game with questions on the states of the USA, and it includes the challenge of a jigsaw

puzzle. The jigsaw puzzle includes the feature of saving the puzzle-in-progress using

localStorage.

For Chapter 10, I decided to address challenges of responsive design and

accessibility as being more appropriate for an HTML and JavaScript book than what I

had before. My examples demonstrate ways to incorporate touch in addition to mouse

actions, to respond to different screen dimensions, and to specify tab order to ease the

use of screen readers.

�Who Is This Book For?
I do believe my explanations are complete, but I am not claiming, as I did for my

previous book, The Essential Guide to HTML5, that this book is for the total beginner.

This book is for the developer who has some knowledge of programming and who

wants to build (more) substantial applications by combining features of JavaScript and

going beyond the basics. It also can serve as an idea book for someone working with

programmers to get an understanding of what is possible.

�How Is This Book Structured?
This book consists of 10 chapters, each organized around an application or type of

application. You can skip around, though there are cross-references between chapters,

indicated in the text. Each chapter starts with an introduction to the application,

with screenshots of the applications in use. The chapters continue with a discussion

of the critical requirements in which concepts are introduced before diving into the

technical details. The next sections describe how the requirements are satisfied, with

specific constructs in HTML5, JavaScript, and CSS. I then show the application coding

line by line with comments. You can decide how to read these tables. You may decide

Introduction

xix

to use them as a reference when writing your own programs. Each chapter ends

with instructions and tips for testing and uploading the application to a server, and a

summary of what you learned.

The code is included as downloads available from the publisher. Go to

https://github.com/Apress/html-js-projs. In addition, the figures are available as

full-color TIFF files. Of course, you will want to use your own media for the projects. My

media (video, audio, and images) is included with the code and this includes images for

the 50 states for the states game in Chapter 9. You can use the project as a model for a

different part of the world or a puzzle based on an image or diagram. There are extras:

a program for an origami frog included with the code in Chapter 7 and a version of the

jigsaw turning into a video from Chapter 8 adapted for use on devices requiring touch is

included with the source code for Chapter 10.

Let’s get started.

Introduction

https://github.com/Apress/html-js-projs

1
© Jeanine Meyer 2018
J. Meyer, HTML5 and JavaScript Projects, https://doi.org/10.1007/978-1-4842-3864-6_1

CHAPTER 1

Building the HTML5
Logo: Drawing
on Canvas with Scaling
and Semantic Tags
In this chapter, you will learn the following:

•	 Drawing paths on a canvas

•	 Placing text on a canvas

•	 Coordinate transformations

•	 Fonts for text drawn on canvas and fonts for text in other elements

•	 Semantic tags

•	 The range input element

�Introduction
The project for this chapter is a presentation of the official HTML5 logo, with

accompanying text. The shield and letters of the logo are drawn on a canvas element and

the accompanying text demonstrates the use of semantic tags. The viewer can change

the size of the logo using a slider input device. It is an appropriate start to this book, a

collection of projects making use of HTML5, JavaScript, and other technologies,

because of the subject matter and because it serves as a good review of basic

2

event-driven programming and other important features in HTML5. The way I

developed the project, building on the work of others, is typical of how most of us

work. In particular, the circumstances provide motivation for the use of coordinate

transformations.

The approach of this book is to explain HTML5, Cascading Style Sheets (CSS), and

JavaScript chapters in the context of specific examples. The projects represent a variety

of applications and, hopefully, you will find something in each one that you will learn

and adapt for your own purposes.

Note  If you need an introduction to programming using HTML5 and JavaScript,
you can consult my book, The Essential Guide to HTML5 or other books published
by Apress or others. There also is considerable material available online, for
example, at W3Schools.

Figure 1-1 shows the opening screen for the logo project on the Chrome browser. It

is important to realize that browsers can be different. Look ahead to how this appeared

using Firefox when I first wrote this example.

Figure 1-1.  Opening screen for HTML5 logo

Chapter 1 Building the HTML5 Logo: Drawing on Canvas with Scaling and Semantic Tags

3

Notice the slider feature, the accompanying text, which contains what appears to

be a hyperlink, and the text in a footer below a yellow line. The footer also includes a

hyperlink. As I will explain later, the function and the formatting of the footer and any

other semantic element is totally up to me, but providing a reference to the owners of the

logo, the World Wide Web Consortium would be deemed an appropriate use.

The viewer can use the slider to change the size of the logo. Figure 1-2 shows the

application after the slider has been adjusted to show the logo reduced to about a third

in width and in height.

The implementation of HTML5 is complete, or pretty close, in all browsers. However,

I want to show you something from the past to illustrate the term graceful degradation.

Figure 1-3 shows the opening screen in the older Firefox. The range input is treated as

text. Notice the initial value is displayed as 100.

Figure 1-2.  Logo scaled down

Chapter 1 Building the HTML5 Logo: Drawing on Canvas with Scaling and Semantic Tags

4

As will be the practice in each chapter, I now explain the critical requirements of

the application, more or less independent of the fact that the implementation will be in

HTML5, and then describe the features of HTML5, JavaScript, and other technologies as

needed that will be used in the implementation. The “Building” section includes a table

with comments for each line of code and guidance for building similar applications. The

“Testing” section provides details for uploading and testing. This section is more critical

in some projects than others. Lastly, there is a “Summary” section that reviews the

programming concepts covered and previews what is next in the book.

�Project History and Critical Requirements
The critical requirements for this project are somewhat artificial and not easily stated as

something separate from HTML. For example, I wanted to draw the logo as opposed to

copying an image from the Web. My design objectives always include wanting to practice

programming and prepare examples for my students. The shape of the shield part of

the logo seemed amenable to drawing on canvas and the HTML letters could be done

using the draw text feature. In addition, there are practical advantages to drawing images

instead of using image files. Separate files need to be managed, stored, and downloaded.

The image shown in Figure 1-4 is 90KB. The file holding the code for the program is only

4KB. Drawing a logo or other graphic means that the scale and other attributes can be

changed dynamically using code.

Figure 1-3.  Application using Firefox

Chapter 1 Building the HTML5 Logo: Drawing on Canvas with Scaling and Semantic Tags

5

I looked online and found an example of just the shield done by Daniel Davis,

@ourmaninjapan. This was great because it meant that I did not have to measure a copy

of the logo image to get the coordinates. This begs the question of how he determined

the coordinates. I don’t know the answer, even though we had a pleasant exchange

of emails. One possibility is to download the image and use the grid feature of image

processing programs such as Adobe Photoshop or Corel Paint Shop Pro. Another

possibility is to use (old-fashioned) transparent graph paper.

However, there was a problem with building on Daniel Davis’s work. His application

did not include the HTML letters. The solution to this was to position the letters on the

screen and then move down, so to speak, to position the drawing of the shield using the

coordinates provided in Daniel’s example. The technical term for “moving down the

screen” is performing a coordinate transformation. So the ability to perform coordinate

transformations became a critical requirement for this project.

I chose to write something about the logo and, in particular, give credit and

references in the form of hyperlinks. I made the decision to reference the official source

of the logo as brief text at the bottom of the document below a line. The reference to

Daniel Davis was part of the writing in the body. We exchanged notes on font choices

and I will discuss that more in the next section.

In order to give the viewer something to do with the logo, I decided to present a means

of changing the size. A good device for this is a slider with the minimum and maximum

values and steps all specified. So the critical requirements for this application include

drawing shapes and letters in a specific font, coordinate transformations, formatting a

document with a main section and a footer section, and including hyperlinks.

Figure 1-4.  Image of a logo

Chapter 1 Building the HTML5 Logo: Drawing on Canvas with Scaling and Semantic Tags

6

�HTML5, CSS, and JavaScript features
I assume that you, the reader, have some experience with HTML and HTML5

documents. One of the most important new features in HTML5 is the canvas element

for drawing. I describe briefly the drawing of filled-in paths of the appropriate color and

filled-in text. Next, I describe coordinate transformations, used in this project for the

two parts of the logo itself and for scaling, changing the size, of the whole logo. Lastly, I

describe the range input element. This produces the slider.

�Drawing Paths on Canvas
Canvas is a type of element introduced in HTML5. All canvas elements have a property

(aka an attribute) called the 2D context. The context has methods for drawing, which you

will see in use. Typically, a variable is set to this property after the document is loaded:

ctx = document.getElementById('canvas').getContext('2d');

It is important to understand that canvas is a good name: code applies color to the

pixels of the canvas, just like paint. Code written later can put a different color on the

canvas. The old color does not show through. Even though our code causes rectangles

and shapes and letters to appear, these distinct entities do not retain their identity as

objects to be re-positioned.

The shield is produced by drawing six filled-in paths in succession with the

accumulated results, as shown in Figure 1-5. You can refer to this picture when

examining the code. Keep in mind that in the coordinates, the first number is the

distance from the left edge of the canvas and the second number is the distance from the

top edge of the canvas.

Figure 1-5.  Sequence of paths for drawing the logo

Chapter 1 Building the HTML5 Logo: Drawing on Canvas with Scaling and Semantic Tags

7

By the way, I chose to show you the sequence with the accumulated results. If I

displayed what is drawn, you would not see the white parts making up the left side of the

five. You can see it because it is two white filled-in paths on top of the orange.

All drawing is done using methods and properties of the ctx variable holding the 2D

context property of the canvas element. The color for any subsequent fill operation is set

by assigning a color to the fillStyle property of the canvas context.

ctx.fillStyle = "#E34C26";

This particular color, given in the hexadecimal format—where the first two hexadecimal

(base 16) digits represent red, the second two hexadecimal digits represent green, and

the last two represent blue—is provided by the W3C website, along with the other colors,

as the particular orange for the background of the shield. It may be counterintuitive, but

in this system, white is specified by the value #FFFFFF. Think of this as all colors together

make white. The absence of color is black and specified by #000000. The pearly gray used

for the right side of the 5 in the logo has the value #EBEBEB. This is a high value, close to

white. It is not necessary that you memorize any of these values, but it is useful to know

black and white, and that a pure red is #FF0000, a pure green is #00FF00, and a pure blue is

#0000FF. You can use the eyedropper/color picker tool in drawing programs such as Adobe

Photoshop, Corel Paint Shop Pro, or the online tool http://pixlr.com/ to find out values of

colors in images or you can use the official designation, when available, for official images.

All drawing is done using the two-dimensional coordinate systems. Shapes are

produced using the path methods. These assume a current location, which you can think

of as the position of a pen or paint brush over the canvas. The critical methods are moving

to a location and setting up a line from the current location to the indicated location. The

following set of statements draws the five-sided orange shape starting at the lower, left corner.

The closePath method closes up the path by drawing a line back to the starting point.

ctx.fillStyle = "#E34C26";

ctx.beginPath();

ctx.moveTo(39, 250);

ctx.lineTo(17, 0);

ctx.lineTo(262, 0);

ctx.lineTo(239, 250);

ctx.lineTo(139, 278);

ctx.closePath();

ctx.fill();

Chapter 1 Building the HTML5 Logo: Drawing on Canvas with Scaling and Semantic Tags

http://pixlr.com/

8

If you haven’t done any drawing on canvas, here is the whole HTML script needed

to produce the five-sided shape. The onLoad attribute in the <body> tag causes the init

function to be invoked when the document is loaded. The init function sets the ctx

variable, sets the fillStyle property, and then draws the path.

<!DOCTYPE html>

<html>

<head>

<title>HTML5 Logo</title>

<meta charset="UTF-8">

<script>

function init() {

 ctx = document.getElementById('canvas').getContext('2d');

 ctx.fillStyle = "#E34C26";

 ctx.beginPath();

 ctx.moveTo(39, 250);

 ctx.lineTo(17, 0);

 ctx.lineTo(262, 0);

 ctx.lineTo(239, 250);

 ctx.lineTo(139, 278);

 ctx.closePath();

 ctx.fill();

}

</script>

</head>

<body onLoad="init();">

<canvas id="canvas" width="600" height="400">

Your browser does not support the canvas element.

</canvas>

</body>

</html>

Do practice and experiment with drawing on the canvas if you haven’t done so

before, but I will go on. The other shapes are produced in a similar manner. By the way, if

you see a line down the middle of the shield, this is an optical illusion.

Chapter 1 Building the HTML5 Logo: Drawing on Canvas with Scaling and Semantic Tags

9

�Placing Text on Canvas and in the Body of a Document
Text is drawn on the canvas using methods and attributes of the context. The text can

be filled in, using the fillText method or drawn as an outline using the strokeText

method. The color is whatever the current fillStyle property or strokeStyle property

holds. Another property of the context is the font. This property can contain the size

of the text and one or more fonts. The purpose of including more than one font is to

provide options to the browser if the first font is unavailable on the computer running

the browser. For this project, I use

var fontfamily = "65px 'Gill Sans Ultra Bold', sans-serif";

and in the init function

ctx.font = fontfamily;

This directs the browser to use the Gill Sans Ultra Bold font if it is available and if not,

use whatever the default sans serif font on the computer.

I could have put this all in one statement, but chose to make it a variable. You can

decide if my choice of font was close enough to the official W3C logo.

Note  There are at least two other approaches to take for this example. One
possibility is not to use text but to draw the letters as filled-in paths. The other is to
locate and acquire a font and place it on the server holding the HTML5 document
and reference it directly using @font-face.

With the font and color set, the methods for drawing text require a string and a

position: x and y coordinates. The statement in this project to draw the letters is

ctx.fillText("HTML", 31,60);

Formatting text in the rest of the HTML document, that is, outside a canvas

element, requires the same attention to fonts. In this project, I choose to make use of

the semantic elements new to HTML5 and follow the practice of putting formatting in

the style element. The body of my HTML script contains two article elements and one

footer elements. One article holds the input element with a comment and the other

article holds the rest of the explanation. The footer element contains the reference to

W3C. Formatting and using these are up to the developer/programmer. This includes

Chapter 1 Building the HTML5 Logo: Drawing on Canvas with Scaling and Semantic Tags

10

making sure the footer is the last thing in the document. If I placed the footer before one

or both articles, it would no longer be displayed at the foot, that is, the bottom of the

document. The style directives for this project are the following:

footer {display:block; border-top: 1px solid orange; margin: 10px; 

 font-family: "Trebuchet MS", Arial, Helvetica, sans-serif; font-weight:

bold;}

article {display:block; font-family: Georgia, "Times New Roman", Times,

serif; margin: 5px;}

The styles each set up all instances of these elements to be displayed as blocks. This

puts a line break before and after. The footer has a border on the top, which produces

the line above the text. Both styles specify a list of four fonts each. So the browser first

sees if Trebuchet MS is available, then checks for Arial, then for Helvetica and then,

if still unsuccessful, uses the system default sans serif font for the footer element.

Similarly, the browser checks for Georgia, then Times New roman, then Times and then,

if unsuccessful, uses the standard serif font. This probably is overkill, but it is the secure

way to operate. The footer text is displayed in bold and the articles each have a margin

around them of 5 pixels.

Formatting, including fonts, is important. HTML5 provides many features for

formatting and for separating formatting from structure and content. You do need to

treat the text on the canvas differently than the text in the other elements.

�Coordinate Transformations
I have given my motivation for using coordinate transformations, specifically to keep

using a set of coordinates. To review, a coordinate system is the way to specify positions

on the canvas. Positions are specified as distances from an origin point. For the two-

dimensional canvas, two coordinates are necessary: the first coordinate governs the

horizontal and is often called the x and the second coordinate governs the vertical and

is called the y. A pesky fact is that when drawing to screens, the y axis is flipped so the

vertical is measured from the top of the canvas. The horizontal is measured from the left.

This means that the point (100,200) is further down the screen than the point (100,100).

In the logo project, I wrote code to display the letters HTML and then moved the

origin to draw the rest of the logo. An analogy would be that I know the location of my

house from the center of my town and so I can give directions to the center of town and

then give directions to my house. The situation in which I draw the letters in the logo and

Chapter 1 Building the HTML5 Logo: Drawing on Canvas with Scaling and Semantic Tags

11

“move down the screen” requires the translate transformation. The translation is done

just in the vertical. The amount of the translation is stored in a variable I named offsety:

var offsety = 80;

...

ctx.fillText("HTML", 31, 60);

ctx.translate(0, offsety);

Since I decided to provide a way for the viewer to change the size of the logo, I used

the scale transformation. Continuing the analogy of directions, this is equivalent to

changing the units. You may give some directions in miles (or kilometers) and other

directions in yards or feet or meters or, maybe, blocks. The scaling can be done separately

for each dimension. In this application, there is a variable called factorvalue that is set

by the function invoked when the input is changed. The statement

ctx.scale(factorvalue, factorvalue);

changes the units for both the horizontal and vertical direction.

HTML5 provides a way to save the current state of the coordinate system and restore

what you have saved. This is important if you need your code to get back to a previous

state. The saving and restoring is done using what is termed a stack: last in first out.

Restoring the coordinate state is termed popping the stack and saving the coordinate

state is pushing something onto the stack. My logo project does not use this in its full

power, but it is something to remember to investigate if you are doing more complex

applications. In the logo project, my code saves the original state when the document

is first loaded. Then before drawing the logo, it restores what was saved and then saves

it again so it is available the next time. This is overkill for this situation, but it is a good

practice just in case I add something in the future. Do your own experiments! The code

at the start of the function dologo, which draws the logo, starts as follows:

function dologo() {

var offsety = 80 ;

ctx.restore();

ctx.save();

ctx.clearRect(0,0,600,400);

ctx.scale(factorvalue,factorvalue);

ctx.fillText("HTML", 31,60);

ctx.translate(0,offsety);

Chapter 1 Building the HTML5 Logo: Drawing on Canvas with Scaling and Semantic Tags

12

// 5 sided orange background

ctx.fillStyle = "#E34C26";

ctx.beginPath();

ctx.moveTo(39, 250);

ctx.lineTo(17, 0);

ctx.lineTo(262, 0);

ctx.lineTo(239, 250);

ctx.lineTo(139, 278);

ctx.closePath();

ctx.fill();

// right hand, lighter orange part of the background

ctx.fillStyle = "#F06529";

ctx.beginPath();

ctx.moveTo(139, 257);

ctx.lineTo(220, 234);

ctx.lineTo(239, 20);

ctx.lineTo(139, 20);

ctx.closePath();

ctx.fill();

...

Note that the canvas is cleared (erased) of anything that was previously drawn.

�Using the Range Input Element
The input device, which I call a slider, is the new HTML5 input type range, and is

placed in the body of the HTML document. Mine is placed inside an article element.

The attributes of this type and other input elements provide ways of specifying the initial

value, the minimum and maximum values, the smallest increment adjustment, and the

action to take if the viewer changes the slider. The code is

<input id="slide" type="range" min="0" max="100" value="100"

 onChange="changescale(this.value)" step="10"/>

The min, max, (initial) value, and step can be set to whatever you like. Since I was

using percentage and since I did not want the logo to get bigger than the initial value or

deal with negative values, I used 0 and 100.

Chapter 1 Building the HTML5 Logo: Drawing on Canvas with Scaling and Semantic Tags

13

In the proper implementation of the slider, the viewer does not see the initial value

or the maximum or minimum. My code uses the input as a percentage. The expression

this.value is interpreted as the value attribute of this element, emphasis given to

convey the switch to English! The term this has special meaning in JavaScript and

several other programming languages. The changescale function takes the value,

specified by the parameter given in the assignment to the onChange attribute, and uses

it to set a global variable (a variable declared outside of any function so it persists and is

available to any function) named factorvalue.

function changescale(val) {

 factorvalue = val / 100;

 dologo();

}

It is part of the specification of HTML5 that the browsers will provide form validation,

that is, browsers will check that the conditions specified by attributes in the input

elements are obeyed. This can be a significant productivity boost in terms of reducing

the work programmers need to do and a performance boost since the checking probably

would be faster when done by the browser. In the HTML5 logo project, an advantage of

the slider is that the viewer does not need to be concerned with values but merely moves

the device. There is no way to input an illegal value. Figure 1-6 shows the results of

entering a value of 200 in the input field.

Figure 1-6.  Display in Firefox of scale of 200

Chapter 1 Building the HTML5 Logo: Drawing on Canvas with Scaling and Semantic Tags

14

The canvas is of fixed width and height and drawing outside the canvas, which is

what is done when the scaling is done to accept numbers and stretch them out to twice

the original value, is ignored.

�Building the Application and Making It Your Own
The project does one thing, it draws the logo. A function, dologo, is defined for this

purpose. Informally, the outline of this program is

	 1.	 init: Initialization

	 2.	 dologo: Draw the logo starting with the HTML letters and then the

shield

	 3.	 changescale: Change the scale

Table 1-1 shows the relationship of the functions. The dologo function is invoked

when the document is first loaded and then whenever the scale is changed.

The coding for the dologo function puts together the techniques previously

described. In particular, the code brings back the original coordinate system and clears

off the canvas.

The global variables in this application are

var ctx;

var factorvalue = 1;

var fontfamily = "65px 'Gill Sans Ultra Bold', sans-serif";

As indicated earlier, it would be possible to not use the fontfamily but use the string

directly in the code. It is convenient to make ctx and factorvalue global.

Table 1-1.  Functions in the HTML5 Logo Project

Function Invoked/Called By Calls

init Invoked by action of the onLoad attribute in the <body> tag dologo

dologo Invoked by init and changescale

changescale Invoked by action of the onChange attribute in the <input

type="range"...> tag

dologo

Chapter 1 Building the HTML5 Logo: Drawing on Canvas with Scaling and Semantic Tags

15

Table 1-2 shows the code for the basic application, with comments for each line.

Table 1-2.  Complete Code for the HTML5 Logo Project

Code Line Description

<!DOCTYPE html> Header

<html> Opening html tag

<head> Opening head tag

<title>HTML5 Logo </title> Complete title element

<meta charset="UTF-8"> Meta tag

<style> Opening style tag

footer {display:block; border-top: 1px

solid orange; margin: 10px; font-family:

"Trebuchet MS", Arial, Helvetica,

sans-serif; font-weight: bold;}

Style for the footer, including the top

border and font family

article {display:block; font-family:

Georgia, "Times New Roman", Times, serif;

margin: 5px;}

Style for the two articles

</style> Close the style element

<!-- Start of script element --> HTML comment

<script language="JavaScript"> Opening script tag. Note: Case doesn’t

matter in JavaScript

var ctx; Variable to hold the context; used in all

drawings

var factorvalue = 1; Set initial value for scaling

var fontfamily = "65px 'Gill Sans Ultra

Bold', sans-serif";

Set the fonts for the text drawn on the

canvas

function init() { Start of init function

 �ctx = document.

getElementById('canvas').

getContext('2d');

Set ctx

(continued)

Chapter 1 Building the HTML5 Logo: Drawing on Canvas with Scaling and Semantic Tags

16

Table 1-2.  (continued)

Code Line Description

 ctx.font = fontfamily; Set font for text drawn on canvas

 ctx.save(); Save the original coordinate state

 dologo(); Invoke function to draw the logo

} Close function

/* dologo function definition. This is

the main function. It uses factorvalue

to change the scale.

*/

Multi-line comment in JavaScript

function dologo() { Start of dologo function

var offsety = 80 ; Specify amount to adjust the coordinates

to draw the shield part of the logo

ctx.restore(); Restore original state of coordinates

ctx.save(); Save it (push onto stack) so it can be

restored again

ctx.clearRect(0,0,600,400); Erase the whole canvas

ctx.scale(factorvalue,factorvalue); Scale horizontally and vertically using

value set by slider

ctx.fillText("HTML", 31,60); Draw the letters: HTML

 ctx.translate(0,offsety); Move down the screen (canvas)

// 5 sided orange background Single-line comment

ctx.fillStyle = "#E34C26"; Set to official bright orange

ctx.beginPath(); Start a path

ctx.moveTo(39, 250); Move to indicated position at lower left

ctx.lineTo(17, 0); Draw line up and more to the left

ctx.lineTo(262, 0); Draw line straight over to the right

ctx.lineTo(239, 250); Draw line down and slightly to the left

(continued)

Chapter 1 Building the HTML5 Logo: Drawing on Canvas with Scaling and Semantic Tags

17

Table 1-2.  (continued)

Code Line Description

ctx.lineTo(139, 278); Draw line to the middle, low point of the

shield

ctx.closePath(); Close the path

ctx.fill(); Fill in with the indicated color

// right hand, lighter orange part of

the background

ctx.fillStyle = "#F06529"; Set color to the official darker orange

ctx.beginPath(); Start the path

ctx.moveTo(139, 257); Move to middle point, close to the top

ctx.lineTo(220, 234); Draw line to the right and slightly up

ctx.lineTo(239, 20); Draw line to the right and up

ctx.lineTo(139, 20); Draw line to the left (point at the middle)

ctx.closePath(); Close path

ctx.fill(); Fill in with the indicated color

//light gray, left hand side part of

the five

ctx.fillStyle = "#EBEBEB"; Set color to gray

ctx.beginPath(); Start path

ctx.moveTo(139, 113); Move to middle horizontally, midway

vertically

ctx.lineTo(98, 113); Draw line to the left

ctx.lineTo(96, 82); Draw line up and slightly further left

ctx.lineTo(139, 82); Draw line to right

ctx.lineTo(139, 51); Draw line up

ctx.lineTo(62, 51); Draw line to the left

ctx.lineTo(70, 144); Draw line to the left and down

(continued)

Chapter 1 Building the HTML5 Logo: Drawing on Canvas with Scaling and Semantic Tags

18

Table 1-2.  (continued)

Code Line Description

ctx.lineTo(139, 144); Draw line to the right

ctx.closePath(); Close path

ctx.fill(); Fill in with indicated color

ctx.beginPath(); Start a new path

ctx.moveTo(139, 193); Move to middle point

ctx.lineTo(105, 184); Draw line to the left and up

ctx.lineTo(103, 159); Draw line slightly to the left and up

ctx.lineTo(72, 159); Draw line more to the left

ctx.lineTo(76, 207); Draw line slightly to the right and down

ctx.lineTo(139, 225); Draw line to the left and down

ctx.closePath(); Close path

ctx.fill(); Fill in the shape in the indicated color

// white, right hand side of the 5

ctx.fillStyle = "#FFFFFF"; Set color to white

ctx.beginPath(); Start path

ctx.moveTo(139, 113); Start at middle pint

ctx.lineTo(139, 144); Draw line down

ctx.lineTo(177, 144); Draw line to the right

ctx.lineTo(173, 184); Draw line slightly left and down

ctx.lineTo(139, 193); Draw line more left and down

ctx.lineTo(139, 225); Draw line down

ctx.lineTo(202, 207); Draw line to the right and up

ctx.lineTo(210, 113); Draw line slightly right and up

ctx.closePath(); Close path

ctx.fill(); Fill in white

(continued)

Chapter 1 Building the HTML5 Logo: Drawing on Canvas with Scaling and Semantic Tags

19

Table 1-2.  (continued)

Code Line Description

ctx.beginPath(); Start a new path

ctx.moveTo(139, 51); Move to middle point

ctx.lineTo(139, 82); Move down

ctx.lineTo(213, 82); Move to the right

ctx.lineTo(216, 51); Move slightly to the right and up

ctx.closePath(); Close path

ctx.fill(); Fill in white

} Close dologo function

// The changescale function, response

to user input.

function changescale(val) { Open function changevalue with

parameter

 factorvalue = val / 100; Set factorvalue to the input divided

by 100

 dologo(); Invoke function to draw logo

} Close changevalue function

</script> Close the script element

</head> Close the head element

The rest of the document is the body

element

<body onLoad="init();"> Body tag with attribute set to invoke init

<canvas id="canvas" width="600"

height="400">

Canvas tag setting dimensions and with ID

to be used in code

Your browser does not support the canvas

element.

Message to appear if canvas not

supported

</canvas> Close canvas tag

(continued)

Chapter 1 Building the HTML5 Logo: Drawing on Canvas with Scaling and Semantic Tags

20

You can make this application your own by using all or parts of it with your own

work. You probably want to omit the comments about fonts.

Table 1-2.  (continued)

Code Line Description

<article> Article tag

Scale percentage: <input id="slide"

type="range" min="0" max="100"

value="100" onChange="changescale(this.

value)" step="10"/>

The slider (range) input with settings

Note: slider treated as text field in

some browsers.

Comment to note that slider may be text

field; it is still usable

</article> Article close tag

<article>Built on <a href=" http://

daniemon.com/tech/html5/html5logo/">work

by Daniel Davis, et al, but don't

blame them for the fonts. Check out the

use of font-family in the style

element and the fontfamily

variable in the script element for safe

ways to do fonts. I did the scaling. Note

also use of semantic elements.</article>

Article tag with some text, including

hyperlink

<footer>HTML5 Logo by <abbr

title="World Wide Web Consortium">

W3C</abbr>.

Footer tag and footer content, including

abbr element

</footer> Footer close tag

</body> Body close

</html> HTML close

Chapter 1 Building the HTML5 Logo: Drawing on Canvas with Scaling and Semantic Tags

21

�Testing and Uploading the Application
This is a simple application to test and upload (and test) because it is a single file. The

variable factorvalue, changed when the range input element is modified and the

changescale function is invoked, can be used to adapt to different screens. This program

appears to work well on different devices. The challenge of what is termed responsive

design will be discussed in Chapter 10.

�Summary
In this chapter, you learned how make a specific drawing and learned the steps to take in

producing other, similar, applications. The features used in this chapter include

•	 Paths

•	 Text on the canvas and text in semantic elements in the body

•	 The range input element and its associated change event

•	 Coordinate transformations, namely translate and scale

•	 Specification of sets of fonts

•	 Styles for semantic elements, including the border top to make a line

to go before the footer

The next chapter describes how to build a utility application for making

compositions or collages of photographs and shapes. It combines techniques for

drawing on canvas and creating HTML elements with a standard technique in

computing, objects. It also uses coordinate transformations.

Chapter 1 Building the HTML5 Logo: Drawing on Canvas with Scaling and Semantic Tags

23
© Jeanine Meyer 2018
J. Meyer, HTML5 and JavaScript Projects, https://doi.org/10.1007/978-1-4842-3864-6_2

CHAPTER 2

Family Collage:
Manipulating
Programmer-Defined
Objects on a Canvas
In this chapter, you will learn the following:

•	 Creating and manipulating object oriented programming for drawing

on canvas

•	 Handling mouse events, including double-clicks

•	 Saving the canvas to an image

•	 Using try and catch to trap errors

•	 Browser differences involving the location of the code

•	 Using algebra and geometry to construct shapes and determine when

the cursor is over a specific object

•	 Controlling the icon used for the cursor

�Introduction
The project for this chapter is a utility for manipulating objects on a canvas to produce

a picture. I call it a utility because one person does the programming and gathers

photographs and designs and then can offer the program to friends, family members,

24

colleagues, and others to produce the compositions/collages. The result can be anything

from an abstract design to a collage of photographs. The objects in my example include

one rectangle, two ovals, a heart, two family photographs, and one video (Annika on

the monkey bars). It is possible for you, or, perhaps, your end-user/customer/client/

player, to make duplicate copies of any of the objects and remove items. The end-user

positions the object using drag and drop with the mouse. When the picture is judged to

be complete, it is possible to create an image that can be downloaded into a file.

Figure 2-1 shows the opening screen for my program. Notice that you start off with

seven objects to arrange.

Figure 2-1.  Opening screen for Family Pictures

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

25

Figure 2-2 shows what I, as an end-user, produced as a final product and saved as an

image in a new window. I have duplicated (clones) the two photographs and the video,

added two more hearts, and removed the rectangle and ovals.

I decided on including a heart, not just for sentimental reasons, but because it

required me to use algebra and geometry. Don't be afraid of mathematics. It is very

useful. I invented, so to speak, a canonical heart. For other shapes, you may be able to

find a standard definition in terms of mathematical expressions.

In this situation, I created the set of objects and then I used the program to make

a composition. You can plan your application include pictures and videos with some

graphics, rectangles, and hearts. When you are finished, you can offer this program to

others for them to use. This is analogous to building a game program for players. The

Figure 2-2.  Sample final product: rearranged objects

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

26

end-users for this application may be family members, friends, or colleagues. The list

of items is stored in a separate file from the main program so it is easy to change what is

included. The technique of separating specification of content from program is a good

trick to master.

Of course, it certainly is possible to use a drawing program such as Adobe Photoshop

or Corel Paint Shop Pro to create compositions such as these, but this application provides

considerable ease-of-use for its specific purpose. The project also serves as a vehicle to

learn important programming techniques as well as features of HTML5 and JavaScript.

And, as will be a continual refrain, there are differences among the browsers to discuss.

�Critical Requirements
The critical requirements for this project include constructing a framework for

manipulating objects on the screen, including detecting mouse events on the objects,

deleting objects and creating copies of objects, and specifying content in an external file.

The current framework provides a way to specify rectangles, ovals, hearts, and images, but

the approach can accommodate other shapes, which is an important lesson of the chapter.

The objective is for the drag-and-drop operations to be reasonably precise: not

merely moving something from one region of the window to another. I will re-visit this

topic in Chapters 8 and 9 on making jigsaw puzzles.

I also made the decision to control the look of the cursor. The cursor when the mouse

is not on the canvas is the standard arrow. When on the canvas element, the cursor will

be the crosshairs. When the user presses down on the mouse button and drags an object,

the cursor changes to a hand with pointer finger.

When the work is complete, it is a natural desire to save it, perhaps as an image file,

so this also is a requirement for the project.

When working on this project for the second edition of the book, I discovered a

feature of the Chrome browser that I need to discuss: the autoplay policy.

�Autoplay Policy
Autoplay refers to a situation in which a video clip is played automatically, without

action by the user. In the collage project, the bouncing video to be described in

Chapter 3, and in the jigsaw turning into a video program to be described in Chapter 8,

my intentions are for the videos to play under program control. I acknowledge that there

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

27

are arguments against this. Autoplay of video may subject users to data fees and may

overload networks. Video ads can be annoying.

As of April 2018, the Chrome browser adopted a policy for autoplay of video (see

https://developers.google.com/web/updates/2017/09/autoplay-policy-changes

for details) in which autoplay in most cases is not allowed. However, there are exceptions,

including muting the audio. For the collage program, I decided to enable videos to play

by muting the video. My original program provides a way to have a different volume level

for each video. Since this works in Firefox, and perhaps other browsers, at least right now,

I have kept the mechanism for specifying volume of video in the program. However, the

code does include a muted attribute in the video tag, so you will need to remove it for the

audio to be heard. Apple for some time has required the user on iPhones and iPads to

start any video and I will describe the implications of this in Chapter 8.

This is a lesson for us that 1) things change and 2) HTML/JavaScript/CSS programs

are dependent on browsers.

�HTML5, CSS, and JavaScript Features
We now explore the features of HTML5 and JavaScript that are used for the Family

Collage project. The idea is to maintain a list of the material on the canvas. This list will

be a JavaScript array. The information will include the position of each item, how it is to

be drawn on the canvas, and how to determine if the mouse cursor is on the item.

�JavaScript Objects
Object oriented programming is a standard of computer science and a critical part

of most programming languages. Objects have attributes, also called properties, and

methods. A method is a function. Put another way, an object has data and code that

may make use of the data. HTML and JavaScript have many built-in objects, such as

document and window, and also arrays and strings. For the Family Collage project, I use

a basic facility in JavaScript (established before HTML5) for defining my own objects.

These sometimes are called user-defined objects, but the term I and others prefer is

programmer-defined objects. This is an important distinction for the Family Collage

project in which you, the programmer, may create an application, with pictures and

other shapes you identify and design, and then offer it to a family member to use.

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

https://developers.google.com/web/updates/2017/09/autoplay-policy-changes

28

The objective of this project is to set up a framework for creating and manipulating

different shapes on the canvas, keeping in mind that once something is drawn to the

canvas, its identity as a rectangle or image is lost. The first step for each shape is to define

what is called a constructor function that stores the information that specifies the shape.

The next step is to define the methods, code for using the information to do what needs

to be done.

My approach gives the appearance of moving things on the canvas. In fact,

information kept in internal variables is changed and the canvas is cleared and new

drawings made each time something happens to change the look of the canvas.

My strategy is to define new types of objects, each of which will have two methods

defined:

•	 draw for drawing the object on the canvas

•	 overcheck for determining if a given position, specifically the mouse

position, is on the object

These methods reference the attributes of the object and use these values in

mathematical expressions to produce the results. Once the constructor functions are

defined, values can be created as new instances of these objects. An array called stuff

holds all the object instances.

Note O bject oriented programming in all its glory has a rich and often daunting
vocabulary. Classes are what define objects. I have hinted here at what is called
an interface. Classes can be subclasses of other classes and this may have been
useful for pictures and rectangles. I'm aiming for a more casual tone here. For
example, I will speak of objects and object instances.

Let’s move away from generalities and see how this works. There is an expression:

what comes first, the chicken or the egg? I have a “chicken and egg” problem on order.

I first describe the specification of the content in an external file. Then I will describe the

functions I created and named Rect, Oval, Picture, Videoblock, and Heart. These will

be what are called the constructor functions for the Rect, Oval, Picture, Videoblock,

and Heart object instances. It is a convention to start such functions with capital letters.

Then I will describe the createelements function that invokes the constructor function.

There is a similar “chicken and the egg” problem regarding drawing the objects.

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

29

�External File of Specifications

The specification for objects is kept in a separate file. I show the long comment because

I need it to remember what the paramters for each object are.

/*

Information on videos, other objects used in collagebase.html

You need to produce 3 video files for each video, type mp4,ogg,webm, with

names as indicated in the videoinfo array.

The first element of each subarray indicates the type of object, that is,

'video', 'heart', 'picture', 'oval','rectangle'.

The elements for video objects are

"video", basename of video files, angle in radians, source x, source y,

destination on canvas x, destination y, width, height, scale factor

(x and y), volume level (0 to 1)

The angle can be used to change the orientation for clips shot on iPhone or

iPads.

The source x and y, with the width and height, allows you to use only some

of the source video.

The elements for 'picture' are

'picture',x,y,w,h,imagename.

The elements for heart are

'heart',x,y,h,drx,color

The elements for oval are

'oval',x,y,r,horizontal scaling, vertical scaling, color

The elements for rectangle are

'rect',x,y, w,h,color

The element for video are

'video',videoname, angle, sourcex, sourcey, x, y, width, height, scale,

volume, alpha

Note: the width and height are the final (destination) width and height.

*/

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

30

var mediainfo=

[

['heart', 300,40,100,30,'red'],

['rect',620,400,100,150,"purple"],

['oval',600,50,30,2,1,'green'],

['oval',80, 500, 30, 2, 1, 'blue'],

['video','monkeyMar18',0,0,0,1000,800,896,1198,.25,1],

['picture',5,150, 150, 200,'danielAndAnnika.jpg'],

['picture',500,150,280,210,'threePlusDog.jpg']

];

�Rect

The definition of the Rect constructor function is

function Rect(x,y,w,h,c) {

 this.x = x;

 this.y = y;

 this.w = w;

 this.h = h;

 this.draw = drawrect;

 this.color = c;

 this.overcheck = overrect;

}

The function could be called in the following way:

var r1 = new Rect(2,10,50,50,"red");

The variable r1 is declared and set to a new object constructed using the function

Rect. The built-in term new does the task of creating a new object. The newly constructed

object holds the values 2 and 10 for the initial x and y positions, accessed using the

attribute names x and y and the values 50 and 50 for width and height accessed using the

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

31

attribute names w and h. The term this refers to the object being constructed. The English

meaning and the computer jargon meaning of new and this match. The Rect function also

stores away values for the attributes draw and overcheck. It is not obvious from what you

have seen so far, but these values will be used to invoke functions named drawrect and

overrect. This is the way to specify methods for the programmer-defined objects. Lastly,

the color attribute is set to "red". Other possibilities exist for specifying color.

�Oval

Moving on, the constructor function for Oval is similar.

function Oval(x,y,r,hor,ver,c) {

 this.x = x;

 this.y = y;

 this.r = r;

 this.radsq = r*r;

 this.hor = hor;

 this.ver = ver;

 this.draw = drawoval;

 this.color = c;

 this.overcheck = overoval;

}

The x and y values refer to the center of the oval. The hor and ver attributes will be

used to scale the horizontal and vertical axis respectively and, depending on the values,

produce an oval that is not a circle. The radsq attribute is calculated and stored to save

time in the overoval function.

Note  Computers are very fast and I am showing my age by storing away and
then using the square of the radius. Still, making this trade-off of extra storage for
savings in computation time may be justified.

A way to set a teal-colored oval would be

var oval1 = new Oval(200,30,20,2.0,1.0, "teal");

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

32

The purple circle has the hor and ver values the same and so is a circle. You have

every right to ask how or where this information is used to produce an oval or circle.

The answer is in the drawoval function that will be shown later. Similarly, the overoval

function checks if a given x,y position is on the oval.

�Picture

The constructor for Picture objects stores away position, width, and height, as well as

the name of an image object.

function Picture(x,y,w,h,imagename) {

 this.x = x;

 this.y = y;

 this.w = w;

 this.h = h;

 this.imagename = imagename;

 this.draw = drawpic;

 this.overcheck = overrect;

}

Setting up a picture would require the following coding, setting an Image variable

and then the Picture object:

var dad = new Image();

dad.src = "daniel1.jpg";

var pic1 = new Picture(10,100,100,100,dad);

�Videoblock

The constructor for Videoblock provides considerable flexibility. The video can be tilted

at an angle (though I choose not to do it for the monkey bar video clip). The volume of

the audio can be controlled. If you decided to include more than one video and all the

videos have audio, you may want to control the volumes. The video can be scaled. The

sx and sy (s for source) allows me to specify where in the video to start extracting the

video to be displayed. The x and y specify where in the canvas and the w and h specify the

final width and height. The alpha parameter can be used to set different transparencies

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

33

for the video. I stick with a setting of 1, no transparency, for videos, but my code does

provide a way for videos to appear lighter over other elements. This should serve as a

notice to investigate combining images and properties such as globalAlpha.

function Videoblock(sx,sy,x,y,w,h,scale,videoel,volume,angle,alpha) {

 this.sx = sx;

 this.sy = sy;

 this.x = x;

 this.y = y;

 this.w = w;

 this.h = h;

 this.videoelement = videoel;

 this.volume = volume;

 this.draw = drawvideo;

 �this.overcheck = overvideo; //need more complex checking because of

angle and scale

 this.angle = angle;

 this.cosine = Math.cos(angle);

 this.sine = Math.sin(angle);

 this.scale = scale;

 this.alpha = alpha;

 videoel.volume = 0;

}

�Heart

We have one more of the programmer defined objects to cover. The challenge I set

myself was to define values that specify a heart shape. I came up with the following: a

heart shape is defined by the position—an x,y pair of values that will be the location of

the cleft of the heart; the distance from the cleft to the bottom point; and the radius for

the two partial circles representing the curved parts of the heart. You can think of this as

a canonical heart. The critical pieces of information are shown in Figure 2-3. If and when

you add new types of shapes to your application, you will need to invent or discover the

data that defines the shape.

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

34

The constructor function saves the indicated values, along with the color, into any

newly constructed object. You might be suspecting that the drawing and the overcheck

will be somewhat more complicated than the functions for rectangles and you would be

correct. The constructor function resembles the other constructor function.

function Heart(x,y,h,drx,color) {

 this.x = x;

 this.y = y;

 this.h = h;

 this.drx = drx;

 this.radsq = drx*drx;

 this.color = color;

 this.draw = drawheart;

 this.overcheck = overheart;

 this.ang = .25*Math.PI;

}

The ang attribute is a case of my hedging my bets. You notice that it is a constant and

I could avoid making it an attribute. You will see later when I explain drawheart how

my coding uses it to make the heart rounded. I made it an attribute just in case I want to

change to allow hearts to have more variability.

Figure 2-3.  Data defining a heart

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

35

�Creating the Elements

At this point, I have shown you the specification of the objects and how to create objects,

but I have not shown you the code for going from specification to creation. This is

done in my createelements function. Notice the switch statement that uses the type

of element to determine the action. The most complicated case is video, with picture

following. My code needs to create a HTML video element and that is done by inserting

the name of the video files in the string my code creates called videomarkup. The

videomarkup, in turn, is created by combining three variables: videotext1, videotext2,

and videotext3. I could have used just one, but then the statements initializing them

would have been very long. The insertion of the name is done using a String method

that JavaScript supplies named replace. This is part of a full implementation of what

are called regular expressions. The video case also has two calls to addEventListener.

One call, for the event loadeddata, is used to wait for all the videos to be fully loaded.

The other call, for the event ended, invokes a restart function. This was necessary for

browsers that do not support looping. All the cases include a statement that adds the

element to an array called stuff.

function createelements() {

 var name;

 var i;

 var type;

 var divelement;

 var videomarkup;

 var velref;

 var vb;

 var imgdummy;

 for (i=0;i<mediainfo.length;i++) {

 type = mediainfo[i].shift(); //removes 1st element from array

 info = mediainfo[i];

 switch(type) {

 case 'video':

 videocount++;

 name = info[0];

 divelement= document.createElement("div");

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

36

 videomarkup = videotext1+videotext2+videotext3;

 videomarkup = videomarkup.replace(/XXXX/g,name);

 divelement.innerHTML = videomarkup;

 document.body.appendChild(divelement);

 velref = document.getElementById(name);

 velref.addEventListener("ended",restart,false);

 velref.addEventListener("loadeddata",videoloaded,false);

 �vb = new Videoblock(info[2],info[3],info[4],info[5],info[6],info[7],

info[8],velref,info[9],info[1],info[10]);

 stuff.push(vb);

 break;

 case 'picture':

 imgdummy = new Image();

 imgdummy.src = info[4];

 images.push(imgdummy);

 �stuff.push(new Picture(info[0],info[1],info[2],info[3],

images[images.length-1]));

 break;

 case 'heart':

 �stuff.push(new Heart(info[0],info[1],info[2],info[3],

info[4]));

 break;

 case 'oval':

 �stuff.push(new Oval(info[0],info[1],info[2],info[3],

info[4],info[5]));

 break;

 case 'rect':

 �stuff.push(new Rect(info[0],info[1],info[2],info[3],

info[4]));

 break;

 }

 }

}

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

37

�Drawing

I still need to explain the functions that serve to accomplish the draw method for

each different type of element, but let’s go to where the drawing is done in order to

demonstrate how all of this works together. I define an array, initially empty

var stuff = [];

The createelements function invokes the array push method to add each element to

the array.

At appropriate times, namely after any changes, the function drawstuff is invoked.

It works by erasing the canvas, drawing a rectangle to make a frame, and then iterating

over each element in the stuff array and invoking the draw methods. The function is

function drawstuff() {

 ctx.clearRect(0,0,800,600);

 ctx.strokeStyle = "black";

 ctx.lineWidth = 2;

 ctx.strokeRect(0,0,800,600);

 for (var i=0;i<stuff.length;i++) {

 stuff[i].draw();

 }

}

Notice that there is no coding that asks, is this an oval, if so do this, or is it a picture, if

so do that.... Instead, the draw method that has been established for each member of the

array does its work! The same magic happens when checking if a position (the mouse) is

on an object. The benefit of this approach increases as more object types are added.

I did realize that since my code never changes the strokeStyle or the lineWidth, I

could move those statements to the init function and just do them one time. However,

it occurred to me that I might have a shape that does change these values and so to

prepare for that possible change in the application at a later time, I set strokeStyle and

lineWidth in drawstuff.

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

38

Now I will explain the methods for drawing and the methods for checking if a

position is on the object. The drawrect function is pretty straight-forward:

function drawrect() {

 ctx.fillStyle = this.color;

 ctx.fillRect(this.x, this.y, this.w, this.h);

}

Remember the term this refers to the object for which drawrect serves as a method.

The drawrect function is the method for rectangles.

The drawoval function is slightly, but only slightly, more complex. You need to recall

how coordinate transformations work. HTML5 JavaScript only allows circular arcs but

does allow scaling the coordinates to produce ovals (ellipses) that are not circles. What

the coding in the drawoval function does is save the current state of the coordinate

system and then perform a translation to the center of the object. Then a scaling

transformation is applied, using the hor and ver properties. Now, after setting the

fillStyle to be the color specified in the color attribute, I use the coding for drawing

a path made up of a circular arc and filling the path. Arcs can be portions of circles, with

the starting and the ending angle specified, with true indicating counter-clockwise. The

default is false, for clockwise. For a complete circle, which is what is indicated here,

I could have omitted the true, since it has the same result as false. See the coding for the

heart in which the direction is critical. The last step is to restore the original state of the

coordinate system.

function drawoval() {

 ctx.save();

 ctx.translate(this.x,this.y);

 ctx.scale(this.hor,this.ver);

 ctx.fillStyle = this.color;

 ctx.beginPath();

 ctx.arc(0,0,this.r,0,2*Math.PI,true);

 ctx.closePath();

 ctx.fill();

 ctx.restore();

}

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

39

This is the way ovals that may or may not be circles are drawn on the canvas. Since

my code restored the original state of the coordinate system, this has the effect of

undoing the scaling and translation transformations.

Again, the terms starting with this followed by a dot and then the attribute names

reference the stored attributes.

Note P lease keep in mind that I didn’t plan and program this whole application
all at once. I did the rectangles and ovals and later added the pictures and much
later the heart. I also added the duplication operation and the deletion operation
much later. Working in stages is the way to go. Planning is important and useful,
but you do not have to have all the details complete at the start.

The drawheart function starts by defining variables to be used later. The leftctrx is

the x coordinate of the center of the left arc and the rightctrx is the x coordinate of the

center of the right arc. The arcs are each more than a half circle. How much more?

I decided to make this be .25* Math.PI and to store this value in the ang attribute.

The tricky thing was to determine where the arc stops on the right side. My code uses

trig expressions to set the cx and cy values. The cx,cy position is where the arc meets the

straight line. Figure 2-4 indicates the meaning of the variables.

Figure 2-4.  Added pieces of data used in functions

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

40

The path will start at what we are calling the cleft or the cleavage (giggle) and draw

the arc on the left. Then it will draw a line to the bottom point, then up to the cx,cy

point, and then finish with the arc on the right. The function is the following:

function drawheart() {

 var leftctrx = this.x-this.drx;

 var rightctrx = this.x+this.drx;

 var cx = rightctrx+this.drx*Math.cos(this.ang);

 var cy = this.y + this.drx*Math.sin(this.ang);

 ctx.fillStyle = this.color;

 ctx.beginPath();

 ctx.moveTo(this.x,this.y);

 ctx.arc(leftctrx,this.y,this.drx,0,Math.PI-this.ang,true);

 ctx.lineTo(this.x,this.y+this.h);

 ctx.lineTo(cx,cy);

 ctx.arc(rightctrx,this.y,this.drx,this.ang,Math.PI,true);

 ctx.closePath();

 ctx.fill();

}

The drawing of pictures is straight-forward. For both pictures and videos, I provide a

way to produce a composite drawing if one object is on top of another.

function drawpic() {

 ctx.globalAlpha = 1.0;

 ctx.drawImage(this.imagename,this.x,this.y,this.w,this.h);

}

The drawing of the Videoblock is more complex because of the facility to put the

video at an angle and scale it. It also is important to understand that what is being drawn

is the current frame of the video clip. This is done using the drawimage method of canvas

elements.

function drawvideo() {

 var savedalpha = ctx.globalAlpha;

 ctx.globalCompositeOperation = "lighter";

 ctx.globalAlpha = this.alpha;

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

41

 if (this.angle!=0) {

 ctx.save();

 ctx.translate(this.x,this.y);

 ctx.rotate(this.angle);

 ctx.translate(-this.x,-this.y)

 if (this.scale!=1) {

 ctx.scale(this.scale,this.scale); }

 �ctx.drawImage(this.videoelement,this.sx,this.sy,

this.w,this.h,this.x,this.y, this.w, this.h);

 ctx.restore();

 }

 else {

 if (this.scale!=1) {

 ctx.save();

 ctx.scale(this.scale,this.scale);

 �ctx.drawImage(this.videoelement,this.sx,this.sy,

this.w,this.h,this.x,this.y, this.w, this.h);

 ctx.restore();

 }

 else {

 �ctx.drawImage(this.videoelement,this.sx,this.sy,

this.w,this.h,this.x,this.y, this.w, this.h);

 }

 }

 ctx.globalAlpha = savedalpha;

 ctx.globalCompositeOperation = savedgco;

}

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

42

�Checking for a Mouse Over Object

Before describing the functions for the overcheck method, I will preview why it is

needed. HTML5 and JavaScript provide ways to handle (listen for and respond to) mouse

events on the canvas and supply the coordinates of where the event took place. However,

our code must do the work of determining what object was involved. Remember: there

are no objects actually on the canvas, just the remains, think of it as paint, of whatever

drawing was done. My code accomplishes this task by looping through the stuff array

and invoking the overcheck method for each object. As soon as there is a hit (and I

will explain the order in which this is done later), my code proceeds with that object as

the one selected. The functions in which this checking occurs are startdragging and

makenewitem and are explained in the next section.

There are four functions to explain for the overcheck method since Picture and

Rect refer to the same function. Each function takes two parameters. Think of the mx,my

as the location of the mouse. The overrect function checks for four conditions each

being true. In English, the question is: Is mx greater than or equal to this.x and is mx less

than or equal to this.x + this.w and is my greater than or equal to this.y and is my less

than or equal to this.y + this.h? The function says this more compactly:

function overrect (mx,my) {

 return (

 �(mx>=this.x)&&(mx<=(this.x+this.w))&&(my>=this.y)&&(my<=(this.

y+this.h)));

}

The function defining the overcheck method for ovals is overoval. The overoval

function performs the operation of checking if something is within a circle, but in a

translated and scaled coordinate system. The check for a point being within a circle

could be done by setting the center of the circle to x1,y1 and the point to x2,y2 and see

if the distance between the two is less than the radius. I use a variation of this to save

time and compare the square of the distance to the radius squared. I define a function

called distsq that returns the square of the distance. But now I need to figure out how

to do this in a translated and scaled coordinate system. The answer is to set x1,y1 to 0,0.

This is the location of the center of the oval in the translated coordinate system. Then my

code sets x2 and y2 as indicated in the code to what would be the scaled values.

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

43

function overoval(mx,my) {

 var x1 = 0;

 var y1 = 0;

 var x2 = (mx-this.x)/this.hor;

 var y2 = (my-this.y)/this.ver;

 if (distsq(x1,y1,x2,y2)<=(this.radsq)){

 return true

 }

 else {return false}

}

This did not come to me instantly. I worked it out trying values for mx and my located

in different positions relative to the oval center. The code does represent what the

transformations do in terms of the translation and then the scaling.

The overheart function consists of several distinct if statements. This is a case of not

trying for a simple expression but thinking about various situations. The function starts off

by setting variables to be used later. The first check made by the function is to determine if

the mx,my point is outside the rectangle that is the bounding rectangle for the heart. I wrote

the outside function to return true if the position specified by the last two parameters was

outside the rectangle indicated by the first four parameters. The qx,qy point is the upper-

left corner. qwidth is the width at the widest point and qheight is the total height.

I thought of this as a quick check that would return false most of the time. The next two if

statements determine if the mx,my point is contained in either circle. That is, I again use

the comparison of the square of the distance from mx,my to the center of each arc to the

stored radsq attribute. At this point in the function, that is, if the mx,my position was not

close enough to the center of either circle and if my is above (less than) this.y, then the

code returns false. Lastly, the code puts the mx value in the equation for each of the sloping

lines and compares the result to my. The equation for a line can be written using the slope

m and a point on the line x2,y2 (note: this is mathematics, not programming):

y = m * (x – x2) + y2

The code sets m and x2,y2 for the line on the left and then modifies it to work for the

line on the right by changing the sign of m. The check is for x set to mx, is my less than the

expression shown. One possible concern here is whether or not the fact that the screen

coordinate system has upside down vertical values (vertical values increase going down

the screen) causes a problem. I checked out cases and the code works.

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

44

function overheart(mx,my) {

 var leftctrx = this.x-this.drx;

 var rightctrx = this.x+this.drx;

 var qx = this.x-2*this.drx;

 var qy = this.y-this.drx;

 var qwidth = 4*this.drx;

 var qheight = this.drx+this.h;

//quick test if it is in bounding rectangle

 if (outside(qx,qy,qwidth,qheight,mx,my)) {

 return false;}

//compare to two centers

 if (distsq(mx,my,leftctrx,this.y)<this.radsq) return true;

 if (distsq(mx,my,rightctrx,this.y)<this.radsq) return true;

// if outside of circles AND below (higher in the screen) than this.y,

return false

 if (my<this.y) return false;

// compare to each slope

 var x2 = this.x;

 var y2 = this.y + this.h;

 var m = (this.h)/(2*this.drx);

// left side

 if (mx<=this.x) {

 if (my < (m*(mx-x2)+y2)) {return true;}

 else { return false;}

 }

 else {

//right side

 m = -m;

 if (my < (m*(mx-x2)+y2)) { return true}

 else return false;

 }

}

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

45

The reasoning underlying the outside function is similar to the overrect function.

You need to write code comparing the mx,my value to the sides of the rectangle. However,

for outside I chose to use the OR operator, ||, and to return its value. This will be true if

any of the factors are true and false otherwise.

function outside(x,y,w,h,mx,my) {

 return ((mx<x) || (mx > (x+w)) || (my < y) || (my > (y+h)));

}

Actually, what I said was true, but misses what could be an important consideration

if performance is an issue. The || evaluates each of the conditions starting from the first

(leftmost) one. As soon as one of them is true, it stops evaluating and returns true. The &&

operator does a similar thing. As soon as one of the conditions is false, it returns false.

The overvideo function must allow for the angle and scaling.

function overvideo (mx,my) {

 //need to add code to check in rotation case and scaling

 omx = mx;

 omy = my;

 if (this.angle!=0) {

 omx = omx-this.x;

 omy = omy - this.y;

 mx = omx*this.cosine + omy*this.sine;

 my = -omx*this.sine + omy*this.cosine;

 mx = this.x +mx;

 my = this.y + my;

 }

 if (this.scale!=1) {

 //alert("prescaling mx is "+mx+" prescaling my is "+my);

 mx = mx/this.scale;

 my = my/this.scale;

 //alert("post scaling mx is "+mx+" post scaling my is "+my);

 }

 return (

 �(mx>=this.x)&&(mx<=(this.x+this.w))&&(my>=this.y)&&(my<=(this.

y+this.h)));

}

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

46

This is the basis for the five types of objects I designed for manipulation on the

canvas. You can look ahead to examine all the code or continue to see how these objects

are put in use in the responses to mouse events.

Note T his example does not demonstrate the full power of object oriented
programming. In a language such as Java (or the variant Processing designed for
artists), I could have programmed this in such a way to check that each additional
object was defined properly, that is with the x and y attributes for location and
methods for drawing and checking.

�User Inter face
The application requirements for the user interface include dragging, that is, mouse

down, mouse move, and mouse up, for re-positioning items and double-clicking for

producing a duplicate copy of an item. I decided to use buttons for the other end-user

actions: removing an item from the canvas and creating an image to be saved. The

button action is straight-forward. I write two instances of the HTML5 button element

with the onClick attributes set to the appropriate function.

<button onClick="saveasimage();">Open window with image (which you can save

into image file)

 </button></br>

<button onClick="removeobj();">Remove last object moved </button>

The saveasimage function will be explained in the next section. The removeobj

function deletes the last moved object from the stuff array because the last moved

object has been positioned as the last element in the array. This makes the coding

extremely simple:

function removeobj() {

 stuff.pop();

 drawstuff();

}

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

47

A pop for any array deletes the last element. The function then invokes the drawstuff

function to display all but the last element. By the way, if the button is clicked at the start

of the application, the last element pushed on the stuff array will be deleted. If this is

unacceptable, you can add a check to prevent this from happening. The cost is that it

needs to be done every time the user clicks on the button.

Fortunately, HTML5 provides the mouse events that we need for this application.

In the init function, I include the following lines:

 canvas1 = document.getElementById('canvas');

 canvas1.onmousedown = function () { return false; };

 canvas1.addEventListener('dblclick',makenewitem,false);

 canvas1.addEventListener('mousedown',startdragging,false);

The first statement sets the canvas1 variable to reference the canvas element. The

second statement is necessary to turn off the default action for the cursor. I also included

a style directive for the canvas, which made the positioning absolute and then positioned

the canvas 80 pixels from the top. This is ample space for the directions and the buttons.

canvas {position:absolute; top:80px;

 cursor:crosshair;

}

The third and fourth statements set up event handling for double-click and mouse

button down events. We should appreciate the fact that we as programmers do not have

to write code to distinguish mouse down, click, and double-click. However, unfortunately,

a double-click will invoke both the makenewitem function and the startdragging

function. That is okay in this situation, but do be aware of it for future work.

The makenewitem and the startdragging functions start off the same. The code

first determines the mouse cursor coordinates and then loops through the stuff array

to determine which, if any, object was clicked on. You probably have seen the mouse

cursor coordinate code before, in the Essential Guide to HTML5, for example. The

looping through the array is done in reverse order. Calls are made to the overcheck

method, defined appropriately for the different types of objects. If there is a hit, then the

makenewitem function calls the clone function to make a copy of that item. The code

modifies the x and y slightly so the new item is not directly on top of the original. The

new item is added to the array and there is a break to leave the for loop.

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

48

function makenewitem(ev) {

 var mx;

 var my;

 if (ev.layerX || ev.layerX == 0) {

 mx= ev.layerX;

 my = ev.layerY;

 } else if (ev.offsetX || ev.offsetX == 0) {

 mx = ev.offsetX;

 my = ev.offsetY;

 }

 var endpt = stuff.length-1;

 var item;

 for (var i=endpt;i>=0;i--) { //reverse order

 if (stuff[i].overcheck(mx,my)) {

 item = clone(stuff[i]);

 item.x +=20;

 item.y += 20;

 stuff.push(item);

 break;

 }

 }

}

As I indicated earlier, the clone function makes a copy of an element in the stuff

array. You may ask, why not just write

 item = stuff[i];

The answer is that this assignment does not create a new, distinct value. JavaScript

merely sets the item variable to point to the same thing as the ith member of stuff. This

is called “copy by reference”. We don’t want that. We want a brand new, separate thing

that we can change. The way to copy is demonstrated in the clone function. A new object

is created and then a for loop is invoked. The for(var info in obj) says: for every

attribute of obj, set an equivalently named attribute in item to the value of the attribute.

function clone(obj) {

 var item = new Object();

 for (var info in obj) {

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

49

 item[info] = obj[info];

 }

 return item;

}

So the effect of the two functions is to duplicate whatever element is under the

mouse cursor. You or your end-user can then mouse down on the original or the cloned

object and move it around.

The startdragged function proceeds as indicated to determine which object was

under the mouse. The code then determines what I (and others) call the offsets in x

and y of the mouse coordinates versus the x,y position of the object. This is because we

want the object to move around, maintaining the same relationship between object and

mouse. Some folks call this the flypaper effect. It is as if the mouse cursor came down on

the object and stuck like flypaper. The offsetx and offsety are global variables. Note

that the coding works for objects for which the x,y values refer to the upper-left corner

(pictures and rectangles), to the center (ovals), and to a specific internal point (hearts).

The coding then performs a series of operations that has the effect of moving this

object to the end of the array. The first statement is a copy by reference operation to set

the variable item. The next step saves the index for the last element of the stuff array to

the global variable thingInMotion. This variable will be used by the moveit function.

The splice statement removes the original element and the push statement adds it to

the array at the end. The statement referencing cursor is the way to specify a cursor. The

“pointer” refers to one of the built-in options. The last two statements in the function

set up the event handling for moving the mouse and releasing the button on the mouse.

This event handling will be removed in the dropit function.

function startdragging(ev) {

 var mx;

 var my;

 if (ev.layerX || ev.layerX == 0) {

 mx= ev.layerX;

 my = ev.layerY;

 } else if (ev.offsetX || ev.offsetX == 0) {

 mx = ev.offsetX;

 my = ev.offsetY;

 }

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

50

 var endpt = stuff.length-1;

 for (var i=endpt;i>=0;i--) { //reverse order

 if (stuff[i].overcheck(mx,my)) {

 offsetx = mx-stuff[i].x;

 offsety = my-stuff[i].y;

 var item = stuff[i];

 thingInMotion = stuff.length-1;

 stuff.splice(i,1);

 stuff.push(item);

 canvas1.style.cursor = "pointer"; // change to finger

 canvas1.addEventListener('mousemove',moveit,false);

 canvas1.addEventListener('mouseup',dropit,false);

 break;

 }

 }

}

The moveit function moves the object referenced by thingInMotion and uses the

offsetx and offsety variables to move the object. The drawstuff function is invoked to

show the modified canvas.

function moveit(ev) {

 var mx;

 var my;

 if (ev.layerX || ev.layerX == 0) {

 mx= ev.layerX;

 my = ev.layerY;

 } else if (ev.offsetX || ev.offsetX == 0) {

 mx = ev.offsetX;

 my = ev.offsetY;

 }

 stuff[thingInMotion].x = mx-offsetx; //adjust for flypaper dragging

 stuff[thingInMotion].y = my-offsety;

 }

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

51

A mousemove event is triggered if the mouse moves a single pixel in any direction. If

this seems too much, remember that the computer does it, not you or I. The user gets a

smooth response to moving the mouse.

The dropit function is invoked at a mouseup event. The response is to remove, stop

the listening for moving and releasing the mouse, and then changing the cursor back to

the crosshairs.

function dropit(ev) {

 canvas1.removeEventListener('mousemove',moveit,false);

 canvas1.removeEventListener('mouseup',dropit,false);

 canvas1.style.cursor = "crosshair"; //change back to crosshair

}

To summarize, the user interface for this application involves two buttons and

several mouse actions. The drag-and-drop operation is implemented using mouse

down, mouse move, and mouse up and cloning an object is done using double-click.

�Saving the Canvas to an Image
After creating a composition, I provide a way for the user to save it to an image file. The

Firefox browser makes this easy. You can right-click on the canvas when using a PC or

do the equivalent operation on a Mac and a pop-up menu will appear with the option to

Save Image As... However, Chrome, Safari, and Opera do not provide that facility. If you

right-click, the options concern the HTML document. There is, however, an alternative

provided in HTML5 that works for Firefox and, perhaps, other browsers. Support for

Chrome changed with the most recent update.

A canvas element has a method called toDataURL that will produce an image from the

canvas. The method provides a choice of image file types, including PNG and JPG. What

I choose to do with the result of this operation is write code to open a new window with

the image as the content. The user then can save this image as a file either by the Save

File option or the right-click for the image. However, there is one more consideration.

Firefox require that this code run from a server, not on the client computer. The client

computer is the one running the browser program. The server computer would be the

website to which you will upload your finished work. You may or may not have one.

Opera and Safari allow the code to run from the client computer. This has an impact on

testing, since, generally speaking, we test programs locally and then upload to a server.

Because of this situation, this is an appropriate place to use the try/catch facility of

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

52

JavaScript for catching errors (so to speak) for the programmer to take action. Here is

the code for the saveasimage function. The variable canvas1 has been set to the canvas

element in the init function invoked when the document is loaded.

function saveasimage() {

 try {

 window.open(canvas1.toDataURL("image/png"));}

 catch(err) {

 �alert("You need to change browsers AND/OR upload the file to a

server.");

 }

}

�Building the Application and Making It Your Own
You can make this application your own by identifying your own media files, specifying

what rectangles, ovals, and hearts you want to include in the collection of objects to

be manipulated and, after you have something working, adding new object types. The

application has many functions but they each are small and many share attributes with

others. An informal summary/outline of the application is

	 1.	 init for initialization, including the createelement function,

setting up event handling for double-click, mouse down, mouse

move, and mouse up.

	 2.	 object definition methods: constructor functions, draw functions,

and overcheck functions.

	 3.	 event handling functions: mouse events and button onClick.

More formally, Table 2-1 lists all the functions and indicates how they are invoked

and what functions they invoke. Notice that several functions are invoked as a result of

the function being specified as a method of an object type.

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

53

Table 2-1.  Functions in the HTML5 Family Collage Project

Function Invoked/Called By Calls

init Invoked by action of the onLoad attribute

in the <body> tag

Picture, Rect, Oval,

Heart, drawstuff

saveasimage Invoked by action of the onClick attribute in a

button tag

removeobj Invoked by action of the onClick attribute in a

button tag

drawstuff

createelements Invoked by init Videoblock, Picture,

Rect, Oval, Heart

restart Invoked by action of addEventListener in

createelements

videoloaded Invoked by action of addEventListener in

createelements

loading Invoked by action of setInterval in init

Picture Invoked in createelements function

Rect Invoked in createelements function

Oval Invoked in createelements function

Heart Invoked in createelements function

Videoblock INVOKED in createelements function

drawheart Invoked in drawstuff

drawrect Invoked in drawstuff

drawoval Invoked in drawstuff

drawpic Invoked in drawstuff

drawvideo Invoked in drawstuff

overheart Invoked in startdragging and makenewitem distsq, outside

overrect Invoked in startdragging and makenewitem

overoval Invoked in startdragging and makenewitem distsq

overvideo Invoked in startdragging and makenewitem

(continued)

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

54

Table 2-1.  (continued)

Function Invoked/Called By Calls

distsq Invoked by overheart and overoval

drawstuff Invoked by makenewitem, removeobj, init

and the action of setInterval in loading

Draw method of each item in

the stuff array

moveit Invoked by action set by addEventListener

for mousemove set in startdragging

dropit Invoked by action set by addEventListener

for mouseup set in startdragging

outside Invoked by overheart

makenewitem Invoked by action set by addEventListener

for dblclick set in init

clone

clone Invoked by makenewitem

startdragging Invoked by action set by addEventListener

for mousedown set in init

Table 2-2 shows the code for the basic application, with comments for each line.

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

55

Table 2-2.  Complete Code for the Family Collage Project

<!DOCTYPE html > Standard heading for HTML5 documents

<html> html tag

<head> head tag

<title>Collage, with video</title> Complete title

<meta charset="UTF-8"> meta tag

<style> Start of style

canvas {position:absolute; top:80px; Directive for canvas, setting its position as

absolute and its location 80 pixels from the top of

the document

 cursor:crosshair; Specifying the cursor icon for when the mouse is

over the canvas

} Close directive

video {display:none;} Initial setting

</style> Close style

<script type="text/javascript"

src="collagedataV2.js"> </script>

External script element link

<script language="Javascript"> Local script tag

var ctx; Variable to hold the canvas context

var canvas1; Variable to hold reference to canvas

var stuff = []; Array for all the objects on the canvas

var thingInMotion; Reference to object being dragged

var offsetx; Horizontal offset for object being dragged

var offsety; Vertical offset for object being dragged

var tid; Hold timing identifier for periodically re-drawing

canvas.

var savedgco; Stores prior composition value

var images = []; Holds images

(continued)

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

56

Table 2-2.  (continued)

var videotext1 = "<video id=\"XXXX\"

preload=\"auto\" loop=\"loop\"

muted> <source src=\"XXXX.webm\"

type=\'video/webm; codec=\"vp8,

vorbis\"\'> ";

Template for start of video element html; note

muted attribute

var videotext2="<source src=\"XXXX.

mp4\" type=\'video/mp4;

codecs=\"avc1.42E01E, mp4a.40.2\"\'>

<source src=\"XXXX.ogv\"

type=\'video/ogg; codecs=\"theora,

vorbis\"\'>";

Template for middle of video element html

var videotext3="Your browser does

not accept the video tag.</video>";

Template for last part of video element html

function restart(ev) { Restarting video clip

 var v = ev.target; The video that just ended

 v.currentTime=0; Set current time back to 0

 v.play(); Play the video

} Close restart

var videocount =0; Global variable keeping track of videos to be

loaded

var okaytogo = false; Will be changed to true when all videos loaded

function videoloaded(ev) { Header for videoloaded function; handler for

event of data being loaded for a video

 �ctx.fillText(ev.target.id+"

loaded.",400,100*videocount);

Put message onscreen (will not remain on

canvas for long)

 ev.target.play(); Start playing the video

 videocount--; Decrement the count of videos still to be loaded

 if (videocount==0) { When no more ...

 okaytogo = true; Set okaytogo to true

(continued)

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

57

Table 2-2.  (continued)

 } Close true clause

} Close videoloaded function

var textmsg = "Loading videos"; Message while videos still being loaded

function init() { Header for init

 canvas1 = document.

getElementById('canvas');

Set variable to reference to canvas element

 canvas1.onmousedown = function

() { return false; };

Prevents change of cursor to default

 �canvas1.addEventListener

('dblclick',makenewitem,false);

Set handling for double-click

 �canvas1.addEventListener

('mousedown',startdragging,false);

Set handling for start of dragging

 �ctx = canvas1.

getContext("2d");

Set variable to hold the context

 �savedgco = ctx.

globalCompositeOperation;

Save initial gco

 createelements(); Call createlements, which uses the external

file contents

 drawstuff(); Draw all the elements in stuff

 ctx.fillText(textmsg,100,100); Write the textmsg indicating waiting for videos

 �loadid = setInterval

(loading,2000);

Set up handling for timing

 ctx.strokeStyle = "blue"; Set border color

} Close init

function loading() { Header for loading

 if (okaytogo) { If all video(s) loaded

 clearInterval(loadid); Stop the timing

(continued)

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

58

Table 2-2.  (continued)

 �tid = setInterval

(drawstuff,40);

Start new timing event, to draw every 40 millisec

 } Close if okaytogo

 else { Else

 textmsg+="."; Add a dot to the message

 �ctx.fillText

(textmsg,100,100);

Write out the message

 } Close the else

} Close the loading function

function createelements() { Header for createelements

 var name; Will hold name of media

 var i; Used to manipulate array

 var type; Will hold the type

 var divelement; Will hold the divelement

 var videomarkup; Will hold the combined videomarkup template

 var velref; Will hold the ref. to any newly created video

element

 var vb; Will hold any newly created videoblock

 var imgdummy; Will hold any newly created image variable

 �for (i=0;i<mediainfo.

length;i++) {

Loop through all the content

 type = �mediainfo[i].

shift();

Removes first element from array

 info = mediainfo[i]; Holds the first subarray (minus the original 0th

element)

 switch(type) { Switch on the type

 case 'video': Video case

(continued)

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

59

Table 2-2.  (continued)

 videocount++; Increment this count, to be used for determining

if all videos loaded

 name = info[0]; Base name of the three video files

 �divelement=

document.createElement("div");

Create a div

 videomarkup =

videotext1+videotext2+videotext3;

Make the template

 videomarkup =

videomarkup.replace(/XXXX/g,name);

Swap in the base name

 divelement.

innerHTML = videomarkup;

Put the result in the div

 document.body.

appendChild(divelement);

Add to the body so it is now part of document;

Note: it isn’t visible yet

 velref =

document.getElementById(name);

Get the reference

 velref.addEvent

Listener("ended",restart,false);

Start the ended event

 velref.addEvent

Listener("loadeddata",videoloaded,

false);

Start the loadeddata event

 �vb = new Videoblock(info[2],

info[3],info[4],info[5],

info[6],info[7],info[8],velref,

info[9],info[1], info[10]);

Create the videoblock element

 stuff.push(vb); Add to the stuff array

 break; Exit the switch

 case 'picture': Picture case

 imgdummy = new Image(); Create an image variable

 imgdummy.src = info[4]; Set its src

(continued)

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

60

Table 2-2.  (continued)

 images.push(imgdummy); Add to the array of images

 stuff.push(new Picture

(info[0],info[1],info[2],info[3],

images[images.length-1]));

Add to the stuff array

 break; Exit the switch

 case 'heart': The heart case

 �stuff.push(new Heart

(info[0],info[1],info[

2],info[3],info[4]));

Create heart object and add to stuff

 break; Exit the switch

 case 'oval': The oval case

 stuff.push(new Oval

(info[0],info[1],info[2],info[3],

info[4],info[5]));

Create the oval object and add to stuff

 break; Exit the switch

 case 'rect': The rect case

 �stuff.push(new Rect

(info[0],info[1],info[

2],info[3],info[4]));

Create the rect object and add to stuff

 break; Exit the switch

 } Close the switch

 } Close the for loop

} Close the createelements function

function distsq (x1,y1,x2,y2) { Function header for distsq. Takes two points

(2x2 values) as parameters

 �//done to avoid taking square

roots

(continued)

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

61

Table 2-2.  (continued)

 var xd = x1 - x2; Set difference in x

 var yd = y1 - y2; Set difference in y

 return ((xd*xd) + (yd*yd)); Returns sum of squares; this is the square of the

distance between the two points

} End distsq function

function Videoblock(sx,sy,x,y,w,h,

scale,videoel,volume,angle,alpha) {

Header for videoblock

 this.sx = sx; Save source x

 this.sy = sy; Save source y

 this.x = x; Save x on canvas

 this.y = y; Save y on canvas

 this.w = w; Save the width

 this.h = h; Save the height

 this.videoelement = videoel; Save the ref to the video element

 this.volume = volume; Save the volume

 this.draw = drawvideo; Set the draw method

 this.overcheck = overvideo; Need more complex checking because of angle

and scale

 this.angle = angle; Save the angle

 this.cosine = Math.cos(angle); Calculate in advance the cosine

 this.sine = Math.sin(angle); Calculate in advance the sine

 this.scale = scale; Save the scale

 this.alpha = alpha; Save alpha

 videoel.volume = 0; Save the volume

}

(continued)

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

62

Table 2-2.  (continued)

function overvideo (mx,my) { Header for overvideo

 //�need to add code to check in

rotation case and scaling

 omx = mx; Store the mouse x

 omy = my; Store the mouse y

 if (this.angle!=0) { Is angle not 0...need to do more complex

checking

 omx = omx-this.x; Calculate horizontal distance

 omy = omy - this.y; Calculate vertical difference

 mx = �omx*this.cosine +

omy*this.sine;

Multi-steps for adjustment for angle

 my = �-omx*this.sine +

omy*this.cosine;

 mx = this.x +mx;

 my = this.y + my;

 }

 if (this.scale!=1) { Now do adjustment for scaling

 �alert("prescaling mx is "+mx+"

prescaling my is "+my);

 mx = mx/this.scale;

 my = my/this.scale;

 }

 �return((mx>=this.x)&&(mx<=

(this.x+this.w))&&(my>=this.y)

&&(my<=(this.y+this.h))) ;

Can now do standard rectangle checking

} Close overvideo

(continued)

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

63

Table 2-2.  (continued)

function drawvideo() { Header for drawvideo

 �var savedalpha = ctx.

globalAlpha;

Save current globalAlpha

 �ctx.globalCompositeOperation =

"lighter";

Set how to combine

 ctx.globalAlpha = this.alpha; Set new alpha

 if (this.angle!=0) { If angle not = zero...

 ctx.save(); Save current coordinate state

 ctx.translate(this.x,this.y); Translate to position of video

 ctx.rotate(this.angle); Rotate angle

 ctx.translate(-this.x,-this.y) Translate back

 if (this.scale!=1) { If scaling..

 �ctx.scale(this.

scale,this.scale); }

Do the scaling

 �ctx.drawImage(this.

videoelement,this.sx,this.

sy,this.w,this.h,this.x,

this.y, this.w, this.h);

Draw from the video

 ctx.restore(); Restore previous coordinate state

 } Close if angle

 else { Else

 if (this.scale!=1) { If scaling

 ctx.save(); Save coordinate state

(continued)

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

64

Table 2-2.  (continued)

ctx.scale(this.scale,this.scale); Do the scaling

ctx.drawImage(this.

videoelement,this.sx,this.

sy,this.w,this.h,this.x,this.y,

this.w, this.h);

Draw from the video

 ctx.restore(); Restore coordinate state

 } Close if scaling

 else { Else

ctx.drawImage(this.

videoelement,this.sx,this.

sy,this.w,this.h,this.x,this.y,

this.w, this.h);

Draw from the video

 } Close else

 } Close the else

 ctx.globalAlpha = savedalpha; Restore the globalAlpha

 �ctx.globalCompositeOperation =

savedgco;

Set the savedgco

} Close drawvideo

function Picture(x,y,w,h,imagename) { Function header for Picture constructor,

positioned at x,y, with width w and height h,

and the imagename Image object

 this.x = x; Set attribute

 this.y = y; Set attribute

 this.w = w; Set attribute

(continued)

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

65

Table 2-2.  (continued)

 this.h = h; Set attribute

 this.imagename = imagename; Set attribute

 this.draw = drawpic; Set drawpic function to be the draw method

 this.overcheck = overrect; Set overrect function to be the overcheck

method

} Close function

function Heart(x,y,h,drx,color) { Function header for Heart constructor, located

with the cleavage at x, y, distance from x, y

to lower tip h, radius drx, and color

 this.x = x; Set attribute

 this.y = y; Set attribute

 this.h = h; Set attribute

 this.drx = drx; Set attribute

 this.radsq = drx*drx; Set attribute to avoid doing this operation

repeated times later

 this.color = color; Set attribute

 this.draw = drawheart; Set drawheart function to be the draw method

 this.overcheck = overheart; Set overheart function to be the overcheck

method

 this.ang = .25*Math.PI; Set attribute to be this constant value; may make

more general at a later time

} Close function

function drawheart() { Function header for drawheart

 var leftctrx = �this.x-this.

drx;

Calculate and set variable to be x coordinate of

center of left curve

 var rightctrx = �this.x+this.

drx;

Calculate and set variable to be x coordinate of

center of right curve

(continued)

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

66

Table 2-2.  (continued)

 var cx = �rightctrx+this.

drx*Math.cos(this.ang);

Calculate and set variable to be x coordinate of point

where curve on the right changes to straight line

 var cy = �this.y + this.drx*Math.

sin(this.ang);

Calculate and set variable to be y coordinate

of point where curve on the right changes to

straight line

 ctx.fillStyle = this.color; Set fillStyle

 ctx.beginPath(); Begin path

 ctx.moveTo(this.x,this.y); Move to cleft of heart

 �ctx.arc(leftctrx,this.y,this.

drx,0,Math.PI-this.ang,true);

Draw left curve

 �ctx.lineTo(this.x,this.

y+this.h);

Move to bottom point

 ctx.lineTo(cx,cy); Move to point where straight line meets curve

 �ctx.arc(rightctrx,this.y,this.

drx,this.ang,Math.PI,true);

Draw right curve

 ctx.closePath(); Close path

 ctx.fill(); Fill in path

} Close function

function overheart(mx,my) { header for overheart function

 var leftctrx = this.x-this.drx; Set variable to be x coordinate of center of left

curve

 var rightctrx = this.x+this.drx; Set variable to be x coordinate of center of right

curve

 var qx = this.x-2*this.drx; Calculate and set variable to be x coordinate of

left of bounding rectangle

 var qy = this.y-this.drx; Calculate and set variable to be y coordinate of

top of bounding rectangle

 var qwidth = 4*this.drx; Calculate and set variable to be width of

bounding rectangle

(continued)

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

67

Table 2-2.  (continued)

 var qheight = this.drx+this.h; Calculate and set variable to be height of

bounding rectangle

 �if (outside(qx,qy,qwidth,

qheight,mx,my)) {

Quick test if it is in bounding rectangle

 return false;}

 �if (distsq(mx,my,leftctrx,this.y)

<this.radsq) return true;

Check if inside left curve

 �if (distsq(mx,my,rightctrx,this.y)

<this.radsq) return true;

or right curve

 if (my<=this.y) return false; Return false if above y on screen (and not

previously determined to be within curves)

 var x2 = this.x Start calculations to compare my to slopes.

Set x2 and

 var y2 = this.y + this.h; set y2 to have x2, y2 point on each sloping line

 var m = (this.h)/(2*this.drx); calculate slope of left line

 if (mx<=this.x) { If mx is on the left side...

 if (my < (m*(mx-x2)+y2)) { compare my to the y value corresponding to mx.

If my is above (on the screen),

 return true;} then return true

 else { Else

 return false;} Otherwise return false

 } Close if if (mx<=this.x) clause

 else { Else

 m = -m; Change sign of slope to be slope of the right line

 if (my < (m*(mx-x2)+y2)) {return

true}

Compare my to the value corresponding to mx on

the right line and if less than (farther up on the

screen) return true

 else return false; Else return false

(continued)

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

68

Table 2-2.  (continued)

 } Close clause

} Close function

function outside(x,y,w,h,mx,my) { Header for outside

 �return ((mx<x) || (mx > (x+w))

|| (my < y) || (my > (y+h)));

Return based on calculation with x,y and width

and height

} Close outside

function drawpic() { Header drawpic

 ctx.globalAlpha = 1.0; Set alpha

 �ctx.drawImage(this.imagename,

this.x,this.y,this.w,this.h);

Draw the image

} Close drawpic

function Oval(x,y,r,hor,ver,c) { Function header for Oval constructor, position

x, y, horizontal scaling hor, vertical scaling ver,

color c

 this.x = x; Set attribute

 this.y = y; Set attribute

 this.r = r; Set attribute

 this.radsq = r*r; Store as attribute to avoid repeated calculations

later

 this.hor = hor; Set attribute

 this.ver = ver; Set attribute

 this.draw = drawoval; Set drawoval as the draw method

 this.color = c; Set attribute

 this.overcheck = overoval; Set overoval as the overcheck method

} Close function

(continued)

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

69

Table 2-2.  (continued)

function drawoval() { Function header for drawoval

 ctx.save(); Save current coordinate state

 ctx.translate(this.x,this.y); Move to center

 ctx.scale(this.hor,this.ver); Scale as indicated by attributes

 ctx.fillStyle = this.color; Set color

 ctx.beginPath(); Start path

 �ctx.arc(0,0,this.r,0,2*Math.

PI,true);

Draw arc (complete circle)

 ctx.closePath(); Close path

 ctx.fill(); Fill in

 ctx.restore(); Restore original coordinate state

} Close function

function Rect(x,y,w,h,c) { Function header Rect constructor: position x,y,

width w and height h, color c

 this.x = x; Set attribute

 this.y = y; Set attribute

 this.w = w; Set attribute

 this.h = h; Set attribute

 this.draw = drawrect; Set drawrect as the draw method

 this.color = c; Set attribute

 this.overcheck = overrect; Set overrect as the overcheck method

} Close function

function overoval(mx,my) { Function header for overoval

Compute positions in the translated and scaled

coordinate system

 var x1 = 0; Set variable to be used in call to distsq; this

represents x coordinate of point at center of oval

(continued)

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

70

Table 2-2.  (continued)

 var y1 = 0; Set variable to be used in call to distsq; this

represents y coordinate of point at center of oval

 var x2 = (mx-this.x)/this.hor; Calculate the x2 using input and scaling factor

 var y2 = (my-this.y)/this.ver; Calculate the y2 using input and scaling factor

 �if (distsq(x1,y1,x2,y2)<=

(this.radsq)){

If distance squares is less than stored radius

squared....

 return true Return true

 } End clause

 else {return false} Else return false

} Close function

function overrect (mx,my) { Header for overrect

 �return ((mx>=this.x)&&(mx<=

(this.x+this.w))&&(my>=this.y)

&&(my<=(this.y+this.h))) ;

Standard calculation for rectangles

} Close overrect

function makenewitem(ev) { Function header for makenewitem; has as a

parameter and event ev set by JavaScript

 var mx; Variable will hold x coordinate of mouse

 var my; Variable will hold y coordinate of mouse

 �if (ev.layerX || ev.layerX

== 0) { // Firefox, ???

Does this browser use layer...

 mx= ev.layerX; ... set mx

 my = ev.layerY; ... set my

 �} else if (ev.offsetX ||

ev.offsetX == 0) { //

Opera, ???

Does browser use offset...

 mx = ev.offsetX; ... set mx

 my = ev.offsetY; ... set my

(continued)

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

71

Table 2-2.  (continued)

 } End clause

 var endpt = stuff.length-1; Store index of last item in stuff array

 var item; Will hold the new item

 �for (var i=endpt;i>=0;i--) {

//reverse order

Start search from the end

 �if (stuff[i].

overcheck(mx,my)) {

Is the mouse over this member of stuff

 item = clone(stuff[i]); Clone (make copy of)

 item.x +=20; Move over slightly horizontally

 item.y += 20; and vertically

 stuff.push(item); Add newly created item to stuff array

 break; Leave for loop

 } End if clause

 } End for loop

} Close function

function clone(obj) { Function header for clone

 var item = new Object(); Create an Object

 for (var info in obj) { Loop over all attributes of the obj passed as

parameter

 item[info] = obj[info]; Set an attribute by that name to the attribute

value

 } Close for loop

 return item; Return the newly created object

} Close function

function startdragging(ev) { Function header for startdragging; has as a

parameter an event ev set by JavaScript

(continued)

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

72

Table 2-2.  (continued)

 var mx; Variable will hold x coordinate of mouse

 var my; Variable will hold y coordinate of mouse

 �if (ev.layerX || ev.layerX

== 0) { // Firefox, ???

Does this browser use layer...

 mx= ev.layerX; ... set mx

 my = ev.layerY; ... set my

 } else if (ev.offsetX ||

ev.offsetX == 0) { // Opera, ???

Does browser use offset...

 mx = ev.offsetX; ... set mx

 my = ev.offsetY; ... set my

 } End clause

 var endpt = stuff.length-1; Store index of last item in stuff array

 �for (var i=endpt;i>=0;i--) {

//reverse order

Start search from the end

 �if (stuff[i].

overcheck(mx,my)) {

Is the mouse over this member of stuff

 offsetx = mx-stuff[i].x; Calculate how far the mx was from the x of this

object

 offsety = my-stuff[i].y; Calculate how far the my was from the y of this

object

 var item = stuff[i]; Will now move this item to the end of the array;

set item

 �thingInMotion =

stuff.length-1;

Set global variable to be used in the dragging

 stuff.splice(i,1); Remove this item from its original location

 stuff.push(item); Add item to the end

 �canvas1.style.cursor =

"pointer";

Change cursor to finger when dragging

(continued)

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

73

Table 2-2.  (continued)

 �canvas1.addEventListener(

'mousemove',moveit,false);

Set up event handling for moving the mouse

 �canvas1.addEventListener

('mouseup',dropit,false);

Set up event handling for releasing mouse button

 break; Leave the for loop

 } Close if clause

 } Close for loop

} Close function

function dropit(ev) { Function header for dropit; has as a parameter

and event ev set by JavaScript

 �canvas1.removeEventListener

('mousemove',moveit,false);

Remove (stop) event handling for moving the

mouse

 �canvas1.removeEventListener

('mouseup',dropit,false);

Remove (stop) event handling for releasing the

mouse button

 �canvas1.style.cursor =

"crosshair";

Change cursor back to crosshair

} close function

function moveit(ev) { Function header for moveit; has as a parameter

and event ev set by JavaScript

 var mx; Variable will hold x coordinate of mouse

 var my; Variable will hold y coordinate of mouse

 �if (ev.layerX || ev.layerX

== 0) { // Firefox, ???

Does this browser use layer...

 mx= ev.layerX; ... set mx

 my = ev.layerY; ... set my

 �} else if (ev.offsetX ||

ev.offsetX == 0) { //

Opera, ???

Does browser use offset...

(continued)

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

74

Table 2-2.  (continued)

 mx = ev.offsetX; ... set mx

 my = ev.offsetY; ... set my

 } End clause

 �stuff[thingInMotion].x =

mx-offsetx; //adjust for

flypaper dragging

Set x for the thingInMotion, adjust for

flypaper dragging

 �stuff[thingInMotion].y =

my-offsety;

Set y for the thingInMotion, adjust for

flypaper dragging

} Close function

function drawstuff() { Function header for drawstuff

 ctx.clearRect (0,0,800,600); Clear (erase) canvas

 ctx.strokeStyle = "black"; Set color for frame

 ctx.lineWidth = 2; Set lineWidth

 ctx.strokeRect(0,0,800,600); Draw frame

 �for (var i=0;i<stuff.

length;i++) {

Iterate through the stuff array

 stuff[i].draw(); Invoke the draw method for each member of the

array

 } Close for

} Close function

function drawrect() { Function header drawrect

 ctx.fillStyle = this.color; Set the color

 �ctx.fillRect(this.x, this.y,

this.w, this.h);

Draw a filled rectangle

} Close function

(continued)

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

75

Table 2-2  (continued)

function saveasimage() { Function header for saveasimage

 try { Start try clause

 window.open(canvas1.

toDataURL("image/png"));}

Create the image data and use it as contents of

new window

 catch(err) { If that didn’t work, that is, threw an error

 �alert("You need to change

browsers AND/OR upload the

file to a server.");

Display alert message

 } Close catch clause

} Close function

function removeobj() { Function header for removeobj

 stuff.pop(); Remove the last member of the stuff array

 drawstuff(); Draw everything

} Close function

</script> Close script element

</head> Close head element

<body onLoad="init();"> Body tag, with onLoad set

Mouse down, move and mouse up to move

objects. Double-click for make a

copy of any object.

Text giving directions

 Line break

<canvas id="canvas" width="800"

height="600">

Canvas tag

Your browser doesn't recognize the

canvas element

Message for older browsers

(continued)

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

76

It is obvious how to make this application your own using only the techniques

demonstrated in my example: gather photos and videos of your own family or acquire

other media and use the rect, oval, and heart to create your own set of shapes.

You can define your own objects, using the coding here as a model. For example, the

Essential Guide to HTML5 book includes coding for displaying polygons. You can make

the overcheck function for the polygon treat the polygon as a circle, perhaps a circle with

smaller radius, and your customers will not object.

The next step could be to build an application that allows the end-user to specify

the addresses of image files. You would need to set up a form for doing this. Another

enhancement is to allow the end-user to enter text, perhaps a greeting, and position it

on the canvas. You would create a new object type and write the draw and overcheck

methods. The overcheck method could be overrect, that is, the program accepts as

being on the text anything in the bounding rectangle.

Table 2-2.  (continued)

</canvas> Ending canvas tag

<button

onClick="saveasimage();">Open window

with image (which you can save into

image file) </button></br>

Button for saving image

<button

onClick="removeobj();">Remove last

object moved </button>

Button for removing object

</body> Close body tag

</html> Close html tag

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

77

�Testing and Uploading the Application
The application consists of code files, one with an extension of .html and the other with

an extension of .js plus all the media files. You need to gather all the media files you want

to include in your application and create the .js file that references the media files and

specifies how you want them to be treated. To put it another way, you can keep my .html

file, and substitute your own .js file, referencing all of your media. The testing procedure

depends on what browser you are using. Actually, it is good practice to test with several

browsers. If you are using Firefox, you need to upload the application—the .html file and

all image files—to a server to test the feature for creating an image. However, the other

aspects of the application can be tested on your own (client) computer.

�Summary
In this chapter, you learned how to build an application involving creating and

positioning specific shapes, namely rectangles, ovals, and hearts, along with pictures

such as photographs on the canvas. The programming techniques and HTML5 features

included:

•	 Separating content and action

•	 Dynamic creation of HTML5 elements

•	 Programming-defined objects

•	 Mouse events on canvas

•	 Using try and catch for trapping errors

•	 Algebra and geometry for several functions

•	 Consideration of video autoplay policy

The next chapter describes creating an application showing a video clip bouncing

around like a ball in a box.

Chapter 2 Family Collage: Manipulating Programmer-Defined Objects on a Canvas

79
© Jeanine Meyer 2018
J. Meyer, HTML5 and JavaScript Projects, https://doi.org/10.1007/978-1-4842-3864-6_3

CHAPTER 3

Bouncing Video:
Animating and Masking
HTML5 Video
In this chapter, you will learn the following:

•	 Produce a moving video clip by drawing the current frame of the

video at different locations on a canvas

•	 Produce a moving video clip by repositioning the video element

within the document window

•	 Make the moving video be a circle in the drawing a frame on canvas

case by drawing a mask that travels along with the video

•	 Make the moving video be a circle in the moving element situation by

using clipPath

•	 Build an application that will adapt to different window sizes

�Introduction
The project for this chapter is a display of a video clip in the shape of a ball bouncing

in a box. An important feature in HTML5 is the native support of video (and audio).

The book The Definitive Guide to HTML5 Video, by Silvia Pfeiffer (Apress, 2010), is an

excellent reference. The challenge in this project is making the video clip move on the

screen. I will describe two different ways to implement the application. The screenshots

do not reveal the differences.

80

Figure 3-1 shows what the application looks like in the full-window view in Firefox.

The video is a standard rectangular video clip. It appears ball-like because of my coding.

You can skip ahead to Figure 3-8 and Figure 3-9 to learn about two techniques for

producing a ball shaped video. Note: all figures are static screen captures of animations.

You need to take my word for it that the video does move and bounce within the box.

Figure 3-1.  Screen capture, full window

Chapter 3 Bouncing Video: Animating and Masking HTML5 Video

81

When the virtual ball hits a wall, it appears to bounce off the wall. If, for example, the

virtual ball is moving down the screen and to the right, when it hits the right side of the

box, it will head off to the left but still be moving down the screen. When the virtual ball

then hits the bottom wall of the box, it will bounce to the left, heading up the screen. The

trajectory is shown in Figure 3-2. To produce this image, I changed the virtual ball to be a

simple circle and did not write code to erase the canvas at each interval of time. You can

think of it as stop-motion photography. Changing the virtual ball was necessary because

of its complexity: an image from a video clip and an all-white mask.

Figure 3-2.  Trajectory of virtual ball

Chapter 3 Bouncing Video: Animating and Masking HTML5 Video

82

Figure 3-3.  Application in a smaller window

If I resize the browser window to be a little bit smaller and reload the application, the

code will resize the canvas to produce what is shown in Figure 3-3: a smaller box,

but the same size video.

Chapter 3 Bouncing Video: Animating and Masking HTML5 Video

83

If the window is made very small, this forces a change in the size of the video clip

itself, as well as the canvas and the box, as shown in Figure 3-4.

Figure 3-4.  Window resized to very small

Chapter 3 Bouncing Video: Animating and Masking HTML5 Video

84

The application adapts the box size, and the virtual video ball size, to the window

dimensions at the time that the HTML document is first loaded. If the window is resized

by the viewer later, during the running of the application, the canvas and video clip are

not resized. In this case, you would see something like Figure 3-5, a small box in a big

window.

Similarly, if you start the application using a full-size window, or any large window,

and resize it to something smaller during the running of the program, you would see

something like Figure 3-6, where the scroll bars are displayed by the browser to indicate

that the content of the document is wider and longer than the window. The video clip

will disappear out of sight periodically for a short period of time before reappearing.

Figure 3-5.  Window resized during running to be larger

Chapter 3 Bouncing Video: Animating and Masking HTML5 Video

85

Figure 3-6.  Large window resized

The two applications (I named them videobounceC for “video frames drawn on canvas”

and videobounceEwithClipPath for “video element using clipPath”) have been tested

successfully in Firefox and Chrome. Note: look back in Chapter 2 for the discussion of

Chrome autoplay policy. I have added the muted attribute to the video tag for this project.

The project demonstrates coding techniques using HTML5, JavaScript, and CSS for

manipulating video and using video together with the canvas for special effects. The project

also explains calculations that are helpful in modifying applications to the dimensions of the

browser window. More on adapting to different dimensions is discussed in Chapter 10.

Chapter 3 Bouncing Video: Animating and Masking HTML5 Video

86

�Project History and Critical Requirements
I have always liked the application of simulating a ball bouncing in a box. Chapter 3 in

The Essential Guide to HTML5 features projects showing a ball produced by a path

drawing and a ball produced by an image, each bouncing in a two-dimensional

enclosure. I decided I wanted to make a video clip do the same thing. My explanation

of the coding is complete in this chapter. However, if the first book is available to you

(shameless plug), you may benefit from seeing what is the same and what is different

among the various versions. In the ball and image applications, the canvas was set to

fixed dimensions and was located with other material in the document. Because I did

not want my video clip to be too small, I decided to use the whole window in this case.

This objective produced the challenge of determining the dimensions of the document

window. In the ball and image applications described in the other book, I wanted to

demonstrate form validation, so the program provided form elements to change the

vertical and horizontal speed. For the bouncing ball video clip, the application just

provides one action for the user: a button to reverse direction. After studying this chapter,

you should be able to add the other interface operations to the video application.

In Chapter 2, you read about including a video with images and drawings. For that

application, I used the technique of drawing the current frame as an image on the

canvas. The drawing was done periodically and often enough to get the experience

of seeing an uninterrupted video. For this chapter, I used that technique and made a

mask—think of a rectangular doughnut—travel along to give the video a ball-like shape.

In addition, I built another HTML/JavaScript script using the approach of moving the

video element directly. One advantage of the element approach is that I can use the

clipPath facility to make the rectangular video element appear ball-like. This requires

much less coding than drawing the rectangular doughnut mask.

The objective is to simulate a ball-like object bouncing within a box. Therefore, the

application must display the walls of the box and perform calculations so that when the

video clip appears to collide with any of the walls, the direction of motion changes in

the appropriate way. A fancy way to describe the change is that the angle of reflection

must equal the angle of incidence. In practical terms, what it means is that when the

video clip virtually hits the bottom or top walls, it keeps going in the same direction

horizontally (to the left if it was traveling to the left and to the right if it was traveling

to the right), but switches direction vertically. When the video clip virtually hits either

Chapter 3 Bouncing Video: Animating and Masking HTML5 Video

87

the left or the right wall, it keeps going in the same direction vertically (traveling up if

it was traveling up and traveling down if it was traveling down), but switches direction

horizontally. If you are interested in simulating real-life physics, you can slow down the

motion at each virtual hit of a wall.

As is my practice, I describe the coding in increasing detail. You can go to the source.

�HTML5, CSS, and JavaScript Features
Any order of explanation means something is often discussed before the reason for

doing it is clear. In this section, I show how certain variables are set that will be shown in

use later on. The general plan is to extract the window dimensions to set variables for the

canvas and the video clip that will be referenced in the coding for drawing the video and

the mask.

�Definition of the Body and the Window Dimensions
The Document Object Model (DOM) provides information about the window in which

the HTML document is displayed by the browser. In particular, the attributes window.

innerWidth and window.innerHeight indicate the usable dimensions of the window.

My code will use these values when it sets up the application.

Recall that the HTML5 video element can contain as child elements any number of

source elements referencing different video files. At this time, this is necessary because

the browsers that recognize the video element do not accept the same video formats

(codecs). The situation may change in the future. If you know the browser used by all

your potential customers, you can determine a single video format. If that is not the case,

you need to make three versions of the same video clip. The Open Source Miro Video

Converter, downloadable from www.mirovideoconverter.com/, is a good product to

convert a video clip into other formats.

With that reminder, I can present the body element for this application. It contains a

video element, a button, and a canvas element:

<body onLoad="init();">

<video id="vid" loop="loop" preload="auto" muted>

<source src="joshuahomerun.mp4" type='video/mp4; codecs="avc1.42E01E,

mp4a.40.2"'>

Chapter 3 Bouncing Video: Animating and Masking HTML5 Video

http://www.mirovideoconverter.com/

88

<source src="joshuahomerun.webmvp8.webm" type='video/webm; codec="vp8,

vorbis"'>

<source src="joshuahomerun.theora.ogg type='video/ogg; codecs="theora,

vorbis"'>

Your browser does not accept the video tag.

</video>

<button id="revbtn" onClick="reverse();">Reverse </button>

<canvas id="canvas" >

This browser doesn't support the HTML5 canvas element.

</canvas>

</body>

Style directives will change the location of the three elements: video, canvas, and

button. We will discuss the directives later in this chapter.

In the init function that’s invoked when the document is loaded, the following

statements set the dimensions of the canvas to match the dimensions of the window:

 canvas1 = document.getElementById('canvas');

 ctx = canvas1.getContext('2d');

 canvas1.width = window.innerWidth;

 cwidth = canvas1.width;

 canvas1.height = window.innerHeight;

 cheight = canvas1.height;

These statements set global variables canvas1, ctx, cwidth, and cheight, which will

be used later. So the task of adapting the canvas to the window is accomplished.

Now the next task takes more thought. How much do I want to adapt the video to the

window dimensions? I decided that I wanted to maintain the aspect ratio, but not have

the video width exceed half of the window width, nor have the video height exceed half

of the window height. I did not want to trigger vertical or horizontal scrolling. I was okay,

even happy, with the circles going beyond the box walls, because it looked something

like the balls flattening. I do think there is room for improvement here.

The Math.min method returns the smallest of its operands, so the statements

 v = document.getElementById("vid");

 var aspect= v.videoWidth/v.videoHeight;

 v.width = Math.min(v.videoWidth,.5*cwidth);

Chapter 3 Bouncing Video: Animating and Masking HTML5 Video

89

 v.height = v.width/aspect;

 v.height = Math.min(v.height,.5*cheight);

 v.width = aspect*v.height;

 var videow = v.width;

 var videoh = v.height;

start by setting the variable v to point to the video element, which you can see I have

coded in the body to have the id "vid". It then calculates the aspect ratio to be used to

maintain the video’s portion. My code first compares the video width to .5 of the canvas

width and sets it to be the minimum of the two values and makes the corresponding

change to the video height. Then the code performs a similar operation on the newly

adjusted height, adjusting the width.

Certain other variables are set in the init function and used for the drawing of the

box and for the mask for one example and the box and the clipPath for the other. You

can examine this in Table 3-2 and Table 3-4.

�Animation
Animation is the trick by which still images are presented in succession fast enough so

that our eye and brain interprets what we see as motion. The exact mechanics of how

things are drawn are explained in the next two sections. Keep in mind that there are two

animations going on: the presentation of the video and the location of the video in the

box. In this section, I talk about the location of the video in the box.

One way to get animation in HTML and JavaScript is to use the setInterval

function. This function is called with two parameters. The first is the name of a function

that we want to call periodically and the second indicates the length of the time interval

between each call to the function. The unit of time is milliseconds.

I began by describing the drawing frames example. The moving the element example

is similar and I will describe the differences. The following statement, which is in the

init function, sets up the animation:

setInterval(drawscene,50);

The parameter drawscene refers to a function that will do the bulk of the work. It

draws a frame from the video and draws the mask, what I refer to as the rectangular

doughnut. I will describe that operation later. The 50 in the setInterval call stands for

50 milliseconds. This means that every 50 milliseconds (or 20 times per second), the

drawscene function will be invoked. Presumably, drawscene will do what needs to be

Chapter 3 Bouncing Video: Animating and Masking HTML5 Video

90

done to display something showing the video clip at a new location. You can experiment

with interval duration.

If you want to enhance this application or build another one in which it makes sense

to stop the animation, you would declare a local variable for the setInterval call (let’s

call it tid) and use the statement

tid = setInterval(drawscene,50);

At the point you wish to stop the animation, or more formally, stop the interval-

timing event, you code

clearInterval(tid);

If you have more than one timing event, you would assign the output for each of

them to a new variable. Be careful not to call setInterval multiple times with the same

function. Doing so has the effect of adding new timing events and invoking the function

multiple times. It is not changing the alarm function on your clock, but setting multiple

clocks.

Much of the details of the drawscene function will be described in the next sections,

but I describe two critical tasks here. One is erasing the canvas and the other is determining

the next position of the video clip. The statement for erasing the whole canvas is

ctx.clearRect(0,0,cwidth,cheight);

Notice that it uses the cwidth and cheight values calculated based on the window

dimensions.

The simulation of bouncing is performed by a function called checkPosition.

The position of the virtual ball is defined by the variables ballx and bally. The

(ballx,bally) position is the upper-left corner of the video. The motion, also termed

the displacement, is defined by the variables ballvx and ballvy. These two variables are

termed the horizontal and vertical displacements, respectively.

Note  Why did I use two functions, drawscene and checkPosition, when I could
have used just one? The checkposition function is just invoked by drawscene.
The answer is that the operation of these seemed like distinct operations to me and
it is a good practice to make distinct functions for distinct tasks.

Chapter 3 Bouncing Video: Animating and Masking HTML5 Video

91

The objective of the checkPosition function is to reposition the virtual ball by

setting ballx and bally to expressions involving ballvx and ballvy, respectively.

When appropriate, my code must change the signs of ballvx and ballvy. The way the

code works is to try out new values (see nballx and nbally in the function) and then set

ballx and bally. Changing the sign of the displacement values has the effect of making

the balls bounce by changing the appropriate horizontal or vertical adjustment for the

next interval. If the ball hits at a corner, then both displacement values change sign, but

generally, just one changes.

The task now is to determine when to do the bounce. You need to accept that as far

as the computer’s concerned, there are no balls, bouncing or otherwise, and no walls.

There are just calculations. Moreover, the calculations are done at discrete intervals of

time. There is no continuous motion. The virtual ball jumps from position to position.

The trajectory appears smooth because the jumps are small enough and our eye-brain

interprets the pictures as continuous motion. Since the walls are drawn after the video

(that will be explained later), the effect is that the virtual ball touches and goes slightly

behind the wall before changing direction.

My approach is to set up trial or stand-in values for ballx and bally and do

calculations based on these values. You can think of it logically as asking if the video

ball were moved, would it be beyond any of the walls? If so, readjust to just hit that wall

and change the appropriate displacement value. The new displacement value is not

used immediately, but will be part of the calculation made at the next iteration of time.

If the trial value is not at or beyond the wall, keep the trial value as it is and keep the

corresponding displacement value as it is. Then change ballx and bally to the possibly

adjusted stand-in values.

The function definition for the checkPosition function for the videobounceC

program is

function checkPosition() {

 var nballx = ballx + ballvx +.5*videow;

 var nbally = bally + ballvy +.5*videoh;

 if (nballx > cwidth) {

 ballvx =-ballvx;

 nballx = cwidth;

 }

Chapter 3 Bouncing Video: Animating and Masking HTML5 Video

92

 if (nballx < 0) {

 nballx = 0;

 ballvx = -ballvx;

 }

 if (nbally > cheight) {

 nbally = cheight;

 ballvy =-ballvy;

 }

 if (nbally < 0) {

 nbally = 0;

 ballvy = -ballvy;

 }

 ballx = nballx-.5*videow;

 bally = nbally-.5*videoh;

}

I decided to change the name of the function drawscene for the video element

example. I wanted to emphasize that the video was moving as opposed to being drawn.

The counterpart of drawscene is moveVideo. This is the function referenced in the

setInterval call.

function moveVideo(){

 checkPosition();

 v.style.left = String(ballx)+"px";

 v.style.top = String(bally)+"px";

}

The checkPosition function does the calculation to determine when bouncing takes

place.

function checkPosition() {

 var nballx = ballx + ballvx;

 var nbally = bally + ballvy;

 if ((nballx+v.width) > cwidth) {

 ballvx =-ballvx;

Chapter 3 Bouncing Video: Animating and Masking HTML5 Video

93

 nballx = cwidth-v.width;

 }

 if (nballx < 0) {

 nballx = 0;

 ballvx = -ballvx;

 }

 if ((nbally+v.height) > cheight) {

 nbally = cheight-v.height;

 ballvy =-ballvy;

 }

 if (nbally < 0) {

 nbally = 0;

 ballvy = -ballvy;

 }

 ballx = nballx;

 bally = nbally;

}

Notice that the videobounceC version compares ballx + ballvx + .5*videow to

cwidth, whereas videobounceEwithClipPath compares ballx + ballvx + videow

to cwidth. This means the videobounceE program will force bouncing sooner—that is,

turn around sooner—when compared with the right wall. The same holds true for the

checking against the bottom wall. I did this to avoid a problem involving automatic

scrolling. The video element is not restricted to the canvas, so if it moves out from under

the canvas, it is part of the document and is displayed. Because the new display is bigger

than the window, this causes scrolling. The scroll bars would appear, and though you

would not see anything, I did not like the effect. If you started with a smaller window

and made it larger during the program execution, you could see something like what

is shown in Figure 3-7. The video element also can move so fast that it escapes the box.

This is an amusing exercise left for the reader.

Chapter 3 Bouncing Video: Animating and Masking HTML5 Video

94

To avoid this, you will see that I changed the checking for the video element

application. The downside to doing this is that the video ball barely touches the right and

bottom walls.

The reason why these effects do not happen in the video-drawn-on-canvas

application, videobounceC, is that drawing on canvas with coordinates outside of

the canvas has no visible effect. You can look back to Chapter 1, Figure 1-6, to see an

example of drawing “outside the lines” and producing nothing outside the canvas.

Figure 3-7.  Video element bouncing with less restrictive checking

Chapter 3 Bouncing Video: Animating and Masking HTML5 Video

95

Note T here may be other ways to avoid the scrolling problem. This would not
prevent the unsightliness shown in Figure 3-7. It may be possible to prevent
scrolling in the browser. It is possible to stop the users from scrolling, but
automatic scrolling appears to be more of a challenge.

�Video Drawing Frames on Canvas or
As a Movable Element
I now describe two different implementations: one with material from the video drawn

on the canvas and the other with the video element moved around the document.

�Video Drawn on Canvas

As I mentioned previously, HTML5 does provide the facility to draw video on the

canvas as one would draw an image. This actually is a misnomer. Video clips are made

up of sequences of still images called frames. Frame rates vary but typically are 15 to

32 frames per second, so you can understand that video files tend to be large. Video is

stored using different types of encodings, each of which may make different technical

trade-offs in terms of quality and storage size. We do not need to be concerned with

these technicalities, but can think of the video as a sequence of frames. Playing a video

involves presenting the frames in sequence. What happens in the drawImage command

is that the current frame of the video clip is the image drawn on the canvas. If this

operation is performed through a timed interval event, then the viewer will see a frame

at each interval of time. There is no guarantee that the images shown are successive

frames from the video clip, but if done fast enough, the frames drawn will be close

enough to the actual sequence that our eye and brain experience it as the live action of

the video clip.

The command in pseudocode is

ctx.drawImage(video element, x position, y position, width, height);

This command, formally a method of the ctx canvas context, extracts the image

corresponding to the current frame of the video and draws it at the x and y values, with

the indicated width and height. If the image does not have the specified width and

height, the image is scaled. This will not occur for this situation.

Chapter 3 Bouncing Video: Animating and Masking HTML5 Video

96

The goal is to make the traveling video clip resemble a ball. For this application, this

means we want to mask out all but a circle in the center of the rectangular video clip.

I accomplish this by creating a traveling mask. The mask is a drawing in the canvas.

Since I want to place the video element on the canvas element, and also position a shape

created by drawing a path on top of the image drawn from the video clip, I use CSS

directives to make both video and canvas be positioned using absolute positioning.

I want the Reverse button to be on top of the canvas. These directives do the trick:

#vid {position:absolute; display:none;}

#canvas {position:absolute; z-index:10; top:0px; left:0px;}

#revbtn {position:absolute; z-index:20;}

A way to remember how the layering works is to think of the z-axis as coming out of

the screen. Elements set at higher values are on top of elements set at lower values. The

top and left properties of the canvas are each set to 0 pixels to position the upper-left

corner of the canvas in the upper-left corner of the window.

Note  When the z-index is referenced or modified in JavaScript, its name is
zIndex. Hopefully, you appreciate why the name z-index would not work: the
hyphen (-) would be interpreted as a minus operator.

The video element is set in the style directive to have no display. This is because

as an element by itself, it is not supposed to show anything. Instead, the content of the

current frame is drawn to the canvas using the following statement:

ctx.drawImage(v, ballx, bally, videow,videoh);

The ballx and bally values are initialized in the init functions and incremented as

described in the last section. The width and height of the video clip have been modified

to be appropriate for the window size.

One way to understand this is to imagine that the video is being played somewhere

offscreen and the browser has access to the information so it can extract the current

frame to use in the drawImage method.

Chapter 3 Bouncing Video: Animating and Masking HTML5 Video

97

�Movable Video Element

The videobounceE application moves the actual video element on the document.

The video element is not drawn on the canvas, but is a distinct element in the HTML

document. To make the video appear as a circle, I use the clip path feature. The style

directives are

#vid {position:absolute; display:none; z-index: 1;}

#canvas {position:absolute; z-index:10; top:0px; left:0px;}

#revbtn {position:absolute; z-index:20;}

In the init function, I include code that adjusts the video dimensions to fit the

screen.

v = document.getElementById("vid");

 aspect= v.videoWidth/v.videoHeight;

 v.width = Math.min(v.videoWidth,.5*cwidth);

 v.height = v.width/aspect;

 v.height = Math.min(v.height,.5*cheight);

 v.width = aspect*v.height;

 videow = v.width;

 videoh = v.height;

Then I calculate the radius of a circle to be the smaller of half the video width and

video height. My code uses this number to produce a string ending in "px". This string is

used to set the clipPath value.

 amt = .5*Math.min(videow,videoh);

 amtS = String(amt)+"px";

 v.style.clipPath="circle("+amtS+" at center)";

Moving a video element around requires making the video visible and starting

the playing of the video. It also requires positioning. The video element is positioned

through references to style.left and style.top. Furthermore, the settings for the

left and top attributes must be in the form of a character string representing a number

followed by the string "px", standing for pixels. The following code

Chapter 3 Bouncing Video: Animating and Masking HTML5 Video

98

 v.style.left = String(ballx)+"px";

 v.style.top = String(bally)+"px";

 v.play();

 v.style.visibility = "visible";

 v.style.display = "block";

is executed in the init function. Notice also that the initial position of the video is

changed to the initial ballx and bally values. The numeric values need to be converted

to strings, and then the "px" needs to be concatenated to the ends of the strings. This is

because HTML/JavaScript assumes that style attributes are strings. I write the same code

for setting the video element’s top and left properties to the values corresponding to

ballx and bally in the movevideo function. The statements that replace the

ctx.drawImage statement are

 v.style.left = String(ballx)+"px";

 v.style.top = String(bally)+"px";

Lastly, the rectangle (the box) is drawn. It does not need to be drawn again. The

setInterval function is called to do the movement of the video element.

 ctx.strokeRect(0,0,cwidth,cheight); //box

 setInterval(moveVideo,50);

This program does not stop the movement, so I do not need to store what is called

the timing event identifier. You may consider enhancing the program to provide a

way to stop movement. I used it to produce some of the figures. All the code for both

videobounceC and videobounceEwithClipPath will be listed with comments in the

“Building the Application and Making It Your Own” section.

�Traveling Mask
The objective of the mask is to mask out—that is, cover up—all of the video except for a

circle in the center. The style directives ensure that I can use the same variables—namely

ballx and bally—to refer to the video and mask in both situations: video drawn and

video element moved. So now the question is how to make a mask that is a rectangular

donut with a round hole.

Chapter 3 Bouncing Video: Animating and Masking HTML5 Video

99

I accomplish this by writing code to draw two paths and filling them in with white.

Since the shape of the mask can be difficult to visualize, I have created two figures to

show you what it is. Figure 3-8 shows the outline of the two paths.

Figure 3-9.  Paths for the mask after a fill and a stroke

Figure 3-8.  Outline of paths for the mask

Figure 3-9 shows the outline and the paths filled in. The two small horizontal paths

will not be present because there is no stroke in the code.

Chapter 3 Bouncing Video: Animating and Masking HTML5 Video

100

Now, the actual path only has the fill, and the fill color is white. You need to imagine

these two white shapes traveling along on top of the video. The effect of the mask is to

cover up most of the video clip. The parts of the canvas that have no paint on them, so to

speak, are transparent, and the video clip content shows through. Putting it another way,

the canvas is on top of the video element, but it is equivalent to a sheet of glass. Each

pixel that has nothing drawn in it is transparent.

The first path starts at the upper-left corner, and then goes over to the right, down to the

midway point, and finally back left toward the center, but stops. The path then is a semicircular

arc. The last parameter indicating the sense of the arc is true for counterclockwise. The path

continues with a line to the left edge and then back up to the start. The second path starts in

the middle of the left edge, proceeds down to the lower-left corner, goes to the lower-right

corner, moves up to the middle of the right side, and then moves to the left. The arc this time

has false as the value of the parameter for direction, indicating the arc is clockwise. The

path ends where it started. However, I did need to make some adjustments to prevent certain

edges of the frame to show. These are indicated by the presence of +2 and -2 in the coding.

ctx.beginPath();

 ctx.moveTo(ballx,bally);

 ctx.lineTo(ballx+videow+2,bally);

 ctx.lineTo(ballx+videow+2,bally+.5*videoh+2);

 ctx.lineTo(ballx+.5*videow+ballrad, bally+.5*videoh+2);

 ctx.arc(ballx+.5*videow,bally+.5*v.height,ballrad,0,Math.PI,true);

 ctx.lineTo(ballx,bally+.5*v.height);

 ctx.lineTo(ballx,bally);

 ctx.fill();

 ctx.closePath();

 ctx.beginPath();

 ctx.moveTo(ballx,bally+.5*v.height);

 ctx.lineTo(ballx,bally+v.height);

 ctx.lineTo(ballx+v.width+2,bally+v.height);

 ctx.lineTo(ballx+v.width+2,bally+.5*v.height-2);

 ctx.lineTo(ballx+.5*v.width+ballrad,bally+.5*v.height-2);

 ctx.arc(ballx+.5*v.width,bally+.5*v.height,ballrad,0,Math.PI,false);

 ctx.lineTo(ballx,bally+.5*v.height);

 ctx.fill();

 ctx.closePath();

Chapter 3 Bouncing Video: Animating and Masking HTML5 Video

101

You can follow along the coding with my “English’” description to see how it works.

By the way, my initial attempt was to draw a path consisting of a four-sided shape

representing the outer rectangle and then a circle in the middle. This worked for some

browsers, but not others.

For the videobounceC application, the mask is on top of the frames of video drawn

on canvas because the two white filled-in paths are drawn after the drawImage statement

draws a frame from the video. The next chapter, which demonstrates a spotlight moving

on top of a map from Google Maps, will feature changing the z-index using JavaScript.

The z-axis is coming out of the screen and can be used to change what is drawn closer to

the viewer and what is drawn farther away. I will mention this in the next section.

�User Interface
The user interface for both versions of the videobounce project only includes one action

for the user: the user can reverse the direction of travel. The button is defined by an

element in the body:

<button id="revbtn" onClick="reverse();">Reverse </button>

The effect of the onClick setting is to invoke the function named reverse. This

function is defined to change the signs of the horizontal and vertical displacements:

function reverse() {

 ballvx = -ballvx;

 ballvy = -ballvy;

}

There is one important consideration for any user interface. You need to make sure it

is visible. This is accomplished by the following style directive:

#revbtn {position:absolute; z-index:20;}

The z-index places the button on top of the canvas, which in turn is on top of the

video.

Having explained the individual HTML5, CSS, and JavaScript features that can be

used to satisfy the critical requirements for bouncing video, I’ll now show the code in

the two bouncing video applications: the drawing frames with a mask traveling over the

frame and a video element masked by a clip path.

Chapter 3 Bouncing Video: Animating and Masking HTML5 Video

102

�Building the Application and Making It Your Own
The two applications for simulating the bouncing of a video clip ball in a two-

dimensional box contain similar code, as does the program that produced the picture

of the trajectory. The moving the video element is shorter because the clip path style

feature effectively produces a mask. The clip path style feature has other possibilities,

including a polygon, so it is something to research. A quick summary of the applications

follows. The video applications are summarized by the following:

	 1.	 init: initialization, including adapting to fit the window and

setting up the timed event for invoking displaying the new scene.

	 2.	 drawscene

a.	 Erase canvas.

b.	 Determine new location of video (virtual ball) using

moveandcheck.

c.	 Draw the image from video at a specified location on the canvas.

d.	 Draw paths on canvas to create traveling (rectangular donut)

mask.

e.	 Draw the box.

	 3.	 moveVideo

a.	 Determine new location of video using checkPosition.

b.	 checkPosition: Check if the virtual ball will hit any wall. If so,

change the appropriate displacement value.

c.	 Position video element at current position.

The table describing the invoked/called by and calling relationships for the drawing

frames application is shown in Table 3-1.

Chapter 3 Bouncing Video: Animating and Masking HTML5 Video

103

Table 3-1.  Functions in the videobounceC Program

Function Invoked/Called By Calls

init Invoked by action of the onLoad attribute in the <body> tag

drawscene Invoked by action of the setInterval command issued in

init

moveAndCheck

moveAndCheck Invoked in drawscene

reverse Invoked by action of onClick in the button

Table 3-2.  Complete Code for the videobounceC Application

Code Line Description

<!DOCTYPE html> Header

<html> Opening html tag

<head> Opening head tag

<title>Video frames bounce</title> Complete title

<meta charset="UTF-8"> Meta element

<style> Opening style

#vid {position:absolute;

display:none;}

Set up positioning of video; set display to none;

video element never appears

#canvas {position:absolute;

z-index:10; top:0px; left:0px;}

Set positioning to absolute and position to be

upper-left corner; set z-index so it is under the

Reverse button

#revbtn {position:absolute;

z-index:20;}

Set positioning to absolute and z-index so it is

over the canvas

</style> Close style

<script type="text/javascript"> Opening script tag

var canvas1;

Table 3-2 shows the code for the videobounceC application, which draws the current

frame of the video on the canvas at set intervals of time.

(continued)

Chapter 3 Bouncing Video: Animating and Masking HTML5 Video

104

Table 3-2.  (continued)

Code Line Description

var ctx; Used to hold canvas context; used for all drawing

var cwidth; Used to hold canvas width

var cheight; Used to hold canvas height

var videow; Used to hold adjusted video width

var videoh; Used to hold adjusted video height

var ballrad = 50; Set ball radius

var ballx = 50; Initial horizontal coordinate for ball

var bally = 60; Initial vertical coordinate for ball

var maskrad; Used for mask radius

var ballvx = 2; Initial ball horizontal displacement

var ballvy = 4; Initial ball vertical displacement

var v; Will hold video element

var videow;

var videoh;

function restart() { Function header for restart

 v.currentTime=0; Reset place in video to the start

 v.play(); Play video

} Close restart function

function init(){ Function header for init

 canvas1 = document.

getElementById('canvas');

Set reference for canvas

 ctx = canvas1.getContext('2d'); Set reference for canvas context

 canvas1.width = window.innerWidth; Set canvas width to match current window width

 cwidth = canvas1.width; Set variable

 canvas1.height = window.innerHeight; Set canvas height to match current window height

(continued)

Chapter 3 Bouncing Video: Animating and Masking HTML5 Video

105

Table 3-2.  (continued)

Code Line Description

 cheight = canvas1.height; Set variable

 v = document.getElementById("vid"); Set reference to video element

aspect = v.videoWidth/v.videoHeight; Compute aspect ratio; the videoWidth and

videoHeight values describe the original

video and do not change

 �v.width = Math.min(v.

videoWidth,.5*cwidth);

Set video width

 v.height = v.width/aspect; Adjust v.height to maintain proportions

 �v.height = Math.min(v.

height,.5*cheight);

Set video height

v.width = aspect*v.height; Adjust v.width to maintain proportions

window.onscroll = function () {

 window.scrollTo(0,0);

 };

Stops any user action to scroll, if scroll bars do

appear

 videow = v.width; Set variable

 videoh = v.height; Set variable

 ballrad = Math.min(.5*videow,.5*videoh); Modify ballrad

 ctx.lineWidth = ballrad; Set line width for drawing the box

 ctx.strokeStyle ="rgb(200,0,50)"; Set color to reddish

 ctx.fillStyle="white"; Set fill style for mask to be white

 v.play(); Start video

 setInterval(drawscene,50); Set up timed event

} Close init function

function drawscene(){ Function header for drawscene

 ctx.clearRect(0,0,cwidth,cheight); Erase canvas

(continued)

Chapter 3 Bouncing Video: Animating and Masking HTML5 Video

106

Table 3-2.  (continued)

Code Line Description

 checkPosition(); Check if next move is at a wall, and if so, adjust

displacements and position; otherwise, just

make the move

 ctx.drawImage(v,ballx, bally,

videow,videoh);

Draw image from video at indicated position

 ctx.beginPath(); Start the path for the top half of the mask

 ctx.moveTo(ballx,bally); Move to starting point

ctx.lineTo(ballx+videow+2,bally); Move over horizontally

ctx.lineTo(ballx+videow+2,bally+.5*vid

eoh+2);

Move down to halfway

 ctx.lineTo(ballx+.5*videow+ballrad,

bally+.5*videoh+2);

Move in to the start of where the opening will be

 ctx.arc(ballx+.5*videow,bally+.5*video

h,ballrad,0, Math.PI,true);

Make semicircular arc

 ctx.lineTo(ballx,bally+.5*videoh); Move to the left

 ctx.lineTo(ballx,bally); Move to start

 ctx.fill(); Fill in the white top of the mask

ctx.closePath(); Close top part of mask

ctx.beginPath(); Start bottom part of mask

 ctx.moveTo(ballx,bally+.5*videoh); Move to start the bottom of the mask; move to

point midway down on the left

 ctx.lineTo(ballx,bally+videoh); Move down to the lower left

 ctx.lineTo(ballx+videow+2,bally+videoh); Move over to the right corner

 ctx.lineTo

(ballx+videow+2,bally+.5*videoh-2);

Move up to the middle on the right

 ctx.lineTo(ballx+.5*videow+ballrad,

bally+.5*videoh-2);

Move in to the start of the hole in the mask

(continued)

Chapter 3 Bouncing Video: Animating and Masking HTML5 Video

107

Table 3-2.  (continued)

Code Line Description

 ctx.arc(ballx+.5*videow,bally+.5*video

h,ballrad,0,Math.PI,false);

Make semicircular arc

 ctx.lineTo(ballx,bally+.5*videoh); Move to the right

 ctx.fill(); Fill in the white bottom of the mask

ctx.closePath(); Close the bottom part of mask

 ctx.strokeRect(0,0,cwidth,cheight); Draw the box

} Close the drawscene function

function checkPosition() { Header for the checkPosition function

 var nballx = ballx + ballvx+.5*videow; Set up trial values for x

 var nbally = bally +ballvy+.5*videoh; Set up trial values for y

 if (nballx > cwidth) { Compare to right wall, on a hit

 ballvx =-ballvx; Change sign of the horizontal displacement

 nballx = cwidth; Set trial value to be exactly at the right wall

 } Close clause

 if (nballx < 0) { Compare to left wall, on a hit

 nballx = 0; Set trial value to be exactly at the left wall

 ballvx = -ballvx; Change sign of the horizontal displacement

 } Close clause

 if (nbally > cheight) { Compare to bottom wall, on a hit

 nbally = cheight; Set trial value to exact height

 ballvy =-ballvy; Change the sign of the vertical displacement

 } Close clause

 if (nbally < 0) { Compare to top wall on a hit

 nbally = 0; Change trial value to be exactly at the top wall

 ballvy = -ballvy; Change the sign of the vertical displacement

 } Close clause

(continued)

Chapter 3 Bouncing Video: Animating and Masking HTML5 Video

108

Table 3-2.  (continued)

Code Line Description

 ballx = nballx-.5*videow; Set ballx using trial value, and offset to be the

upper-left corner, not the center

 bally = nbally-.5*videoh; Set bally using the trial value, and offset to be

the upper-left corner, not the center

} Close checkPosition function

function reverse() { Function header for the button action

 ballvx = -ballvx; Change sign of horizontal displacement

 ballvy = -ballvy; Change sign of vertical displacement

} Close reverse function

</script> Closing script tag

</head> Closing head tag

<body onLoad="init();"> Opening body tag; set up call to init

<video id="vid" loop="loop"

preload="auto" muted>

Video element header; note muted attribute

<source src="joshuahomerun.mp4"

type='video/mp4; codecs="avc1.42E01E,

mp4a.40.2"'>

Source for the MP4 video

<source src="joshuahomerun.webmvp8.

webm" type='video/webm; codec="vp8,

vorbis"'>

Source for the WEBM video

<source src="joshuahomerun.theora.

ogg type='video/ogg; codecs="theora,

vorbis"'>

Source for the OGG video

Your browser does not accept the video

tag.

Message for noncompliant browsers

 </video> Close video tag

(continued)

Chapter 3 Bouncing Video: Animating and Masking HTML5 Video

109

Table 3-2.  (continued)

Code Line Description

<button id="revbtn"

onClick="reverse();">Reverse

</button>

Button for viewer to reverse direction

<canvas id="canvas"> Opening canvas tag

This browser doesn't support the HTML5

canvas element.

Message for noncompliant browsers

</canvas> Closing canvas tag

</body> Closing body tag

</html> Closing html tag

The second version of this application moves the video element as opposed to

drawing the current frame of the video on the canvas. My research indicates that this

may use less computer resources when it is executing. Table 3-3 shows the function

relationships.

Table 3-3.  Function Relationships for the videobounceEwithClipPath Program

Function Invoked/Called By Calls

init Invoked by action of the onLoad attribute in the <body> tag

moveVideo Invoked by action of the setInterval command issued

in init

checkPosition

checkPosition Invoked in moveVideo

reverse Invoked by action of onClick in the button

The code for the version of the program that re-positions a video element as

opposed to drawing frames from a video is shown in Table 3-4. I have omitted the

descriptive comments for when the code statements are the same. Do keep in mind

that the differences between the two approaches are mainly that the bouncing video

element program does not require the generation of the rectangular donut mask for each

iteration nor the erasing and and then re-drawing of the box.

Chapter 3 Bouncing Video: Animating and Masking HTML5 Video

110

Table 3-4.  Complete Code for the VideobounceEwithClipPath Program

Code Line Description

<!DOCTYPE html>

<html>

<head>

<title>Video element bounce</title>

<meta charset="UTF-8">

<style>

#vid {position:absolute; display:none;

z-index: 1;

Need to set positioning and z-index because

display setting will be changed to make

element visible

} End directive

#canvas {position:absolute; z-index:10;

top:0px; left:0px;}

This will be on top of the video and under

the button

#revbtn {position:absolute;

z-index:20;}

</style>

<script type="text/javascript">

var ctx;

var cwidth;

var cheight;

var ballrad = 50;

var ballx = 80; Starting point is arbitrary

var bally = 80; Starting point is arbitrary

var maskrad;

var ballvx = 2;

var ballvy = 4;

var v;

(continued)

Chapter 3 Bouncing Video: Animating and Masking HTML5 Video

111

Table 3-4.  (continued)

Code Line Description

function init(){

 �canvas1 = document.

getElementById('canvas');

 ctx = canvas1.getContext('2d');

 canvas1.width = window.innerWidth;

 cwidth = canvas1.width;

 canvas1.height = window.innerHeight;

 cheight = canvas1.height;

 window.onscroll = function () {

 window.scrollTo(0,0);

 };

 v = document.getElementById("vid");

 aspect = v.videoWidth/v.videoHeight;

 �v.width = Math.min(v.

videoWidth,.5*cwidth);

 v.height = v.width/aspect;

 �v.height = Math.min(v.

height,.5*cheight);

v.width = aspect * v.height;

 videow = v.width;

 videoh = v.height;

 amt = .5*Math.min(videow,videoh); Calculate the radius using the smaller value

amtS = String(amt)+"px"; Turn into string with "px" at the end

v.style.clipPath="circle("+amtS+" at

center)";

Set the clipPath, effectively masking the

video element to be a circle

(continued)

Chapter 3 Bouncing Video: Animating and Masking HTML5 Video

112

Table 3-4.  (continued)

Code Line Description

ballrad = Math.

min(50,.5*videow,.5*videoh);

 ctx.lineWidth = ballrad;

 ctx.strokeStyle ="rgb(200,0,50)";

 ctx.fillStyle="white";

 v.style.left = String(ballx)+"px";

 v.style.top = String(bally)+"px";

 v.play();

 v.style.display = "block"; Make video element visible

 ctx.strokeRect(0,0,cwidth,cheight); Draw box; note that this only needs to be

drawn once

 setInterval(moveVideo,50);

}

function moveVideo(){ Header for function referenced in

setInterval

 checkPosition(); Check on next position; uses global variables

 v.style.left = String(ballx)+"px"; Set horizontal position of element

 v.style.top = String(bally)+"px"; Set vertical position of element

}

function checkPosition() { Header for checkPosition; calculates new

position and checks if there is a bounce on

the next iteration

 var nballx = ballx + ballvx; Trial value

 var nbally = bally +ballvy; Trial value

 if ((nballx+videow) > cwidth) { Add total width and compare

 ballvx =-ballvx; Change sign of horizontal displacement

(continued)

Chapter 3 Bouncing Video: Animating and Masking HTML5 Video

113

Table 3-4.  (continued)

Code Line Description

 nballx = cwidth-videow; Set to exact position

 }

 if (nballx < 0) {

 nballx = 0;

 ballvx = -ballvx;

 }

 if ((nbally+videoh) > cheight) { Compare total length

 nbally = cheight-videoh; Set to exact position

 ballvy =-ballvy; Change sign of vertical displacement

 }

 if (nbally < 0) {

 nbally = 0;

 ballvy = -ballvy;

 }

 ballx = nballx; Set to trial position, possibly adjusted

 bally = nbally; Set to trial position, possibly adjusted

}

function reverse() {

 ballvx = -ballvx;

 ballvy = -ballvy;

}

</script>

</head>

<body onLoad="init();" >

(continued)

Chapter 3 Bouncing Video: Animating and Masking HTML5 Video

114

Table 3-4.  (continued)

Code Line Description

<video id="vid" loop="loop"

preload="auto" muted>

<source src="joshuahomerun.webmvp8.

webm" type='video/webm; codec="vp8,

vorbis"'>

<source src="joshuahomerun.mp4"

type='video/mp4; codecs="avc1.42E01E,

mp4a.40.2"'>

<source src="joshuahomerun.theora.

ogg" type='video/ogg; codecs="theora,

vorbis"'>

Your browser does not accept the video

tag.

 </video>

<button id="revbtn"

onClick="reverse();">Reverse

</button>

<canvas id="canvas" >

This browser doesn't support the HTML5

canvas element.

</canvas>

</body>

</html>

Chapter 3 Bouncing Video: Animating and Masking HTML5 Video

115

To produce Figure 3-2, I made the trajectory function by modifying the drawscene

in videobounceC. Since I wanted the circle to be similar in size to the masked video clip,

I added an alert statement temporarily to the videobounceC function after the video

width and height were set. Then I ran the program using those values:

 v.width = Math.min(v.videoWidth/3,.5*cwidth);

 v.height = Math.min(v.videoHeight/3,.5*cheight);

 alert("width "+v.width+" height "+v.height);

I then used the values, 106 and 80, to be the videow and videoh values in the

trajectory program.

�Making the Application Your Own
The first way to make this application your own is to use your own video. You do need to

find something that is acceptable when displayed as a small circle. You also can explore

uses of the clipPath feature. As mentioned earlier, you need to produce versions using

the different video codecs. A next step is adding other user interface actions, including

changing the horizontal and vertical speeds, as was done in the bouncing ball projects

in The Essential Guide to HTML5. Another set of enhancements would be to add video

controls. Video controls can be part of the video element, but I don’t think that would work

for a video clip that needs to be small and is moving! However, you could implement your

own controls with buttons modeled after the Reverse button. For example, the statement

v.pause();

does pause the video.

The attribute v.currentTime can be referenced or set to control the position within

the video clip. You saw how the range input type works in Chapter 1, so consider

building a slider input element to adjust the video.

You may decide you want to change my approach to adapting to the window

dimensions. One alternative is to change the video clip dimensions to maintain the aspect

ratio. Another alternative is to change the video dimensions all the time. This means that

the video dimensions and the canvas directions will be in proportion all the time. Yet

another alternative, though I think this will be disconcerting, is to make reference to the

window dimensions at each time interval and make changes in the canvas, and possibly

the video, each time. There is an event that can be inserted into the body tag:

<body onresize="changedims();" ... >

Chapter 3 Bouncing Video: Animating and Masking HTML5 Video

116

This coding assumes that you have defined a function named changedims that

includes some of the statements in the current init function to extract the window.

innerWidth and window.innerHeight attributes to set the dimensions of the canvas

and the video.

More generally, the objective of this chapter is to show you ways to incorporate video

into your projects in a dynamic fashion, both in terms of position on the screen and

timing. In particular, it is possible to combine playing of video with drawings on a canvas

for exciting effects.

Screen savers exist in which the screen is filled up by a bouncing object similar to the

trajectory program. You can change the drawscene function to produce different shapes.

Also, as I mentioned before, you can apply the techniques explained in The Essential

Guide to HTML5 to provide actions by the viewer. You can refer to Chapter 1 in this book

for the use of a range input (slider). Yet another possibility is to provide the viewer a way

to change the color of the circle (or other shape you design) using the input type of color.

The Opera browser provides a color-picker option.

�Testing and Uploading the Application
As has been mentioned, but is worth repeating, you need to acquire a suitable video

clip. At the time of writing this book, you then need to use a program such as Miro to

produce the WEBM, MP4, and OGG versions because browsers may recognize different

video encodings (codecs). This situation may change. Again, if you are content with

implementing this for just one browser, you can check which video encoding works for

that browser and just prepare one video file. The video files and the HTML file need to

be in the same folder on your computer and in the same folder on your server if and

when you upload this application to your server account. Alternatively, you can use a

complete web address or the correct relative address in the source elements.

Autoplay policies probably will continue to change, so you need to decide what is

essential to your application.

Chapter 3 Bouncing Video: Animating and Masking HTML5 Video

117

�Summary
In this chapter, you learned different ways to manipulate video. These included the

following:

•	 Drawing the current frame of video as an image onto a canvas

•	 Repositioning of a video element on the screen by changing the left

and top style attributes

•	 Using style directives to layer a video, a canvas, and a button

•	 Creating a moving mask on a canvas

•	 Creating the effect of a mask by using the clipPath style attribute

•	 Acquiring information on the dimensions of the window to adapt an

application to different situations

The next chapter shows you how to use the Google Maps Application Programming

Interface (API) in an HTML5 project. The project involves using a canvas and changing

the z-index so that the canvas is alternatively under and over the material produced by

Google Maps.

Chapter 3 Bouncing Video: Animating and Masking HTML5 Video

119
© Jeanine Meyer 2018
J. Meyer, HTML5 and JavaScript Projects, https://doi.org/10.1007/978-1-4842-3864-6_4

CHAPTER 4

Map Maker: Combining
Google Maps and the
Canvas
In this chapter, you will learn the following:

•	 Use the Google Maps API to display a map at a specific location

•	 Draw graphics on a canvas using transparency (also known as the

alpha or opacity level) and a customized cursor icon

•	 Provide a graphical user interface (GUI) to your users by combining

the use of Google Maps and HTML5 features by managing the events

and the z-index levels

•	 Calculate the distance between two geographical locations

�Introduction
The project for this chapter is an application involving a geographic map. Many

applications today involve the use of an Application Programming Interface (API)

provided by another person or organization. This chapter will be an introduction to

the use of the Google Maps API, and is the first of two chapters using the Google Maps

JavaScript Version 3 API. Figure 4-1 shows the opening screen.

120

Notice the small red (hand-drawn) x located in the middle of the map and on top of

the word College. When deciding on map markers, you face a trade-off. A smaller marker

is more difficult to see. A larger and/or more intricate marker is easier to see but blocks

more of the map or distracts from the map. This map is centered on the Purchase College

Figure 4-1.  Opening screen of map spotlight project

Chapter 4 Map Maker: Combining Google Maps and the Canvas

121

Figure 4-2.  Shadow/spotlight over map

campus. For this program, it is the initial base location. The base location is used to

calculate distances. Notice the radio buttons showing three choices, on three continents.

The middle choice is the starting choice.

Moving the mouse over the map is shown in Figure 4-2.

Chapter 4 Map Maker: Combining Google Maps and the Canvas

122

Notice the shadow and spotlight combination now on the map. Most of the map

is covered by a semitransparent shadow. You need to trust me that this screenshot

was taken when I had moved the mouse over the map. There is a circle around the

mouse position in which the original map shows through. The cursor when moving

over the map is not the standard, default cursor but one I created using a small image

representing a compact fluorescent light bulb.

The text on the screen shows the distance from the base to the last spot on the map

I clicked to be 4.96 kilometers. The marker for all such locations is a hand-drawn x. The

latitude and longitude of this location is indicated in parentheses.

The interface for changing locations is a set of radio buttons—only one button can be

selected at a time—and a button labeled CHANGE to be clicked when the user/viewer/

visitor decides to make a change.

The general GUI features provided by Google Maps are available to the users

of this project. This includes the + and – buttons for zooming in and out. Figure 4-3

demonstrates the result of using my radio buttons to switch to Springer Nature/Apress

Publishers located in London and the Google Maps + to zoom in. It is possible to zoom

in even farther. Notice The Harry Potter Shop.

Chapter 4 Map Maker: Combining Google Maps and the Canvas

123

Figure 4-3.  Zoomed in to London

Chapter 4 Map Maker: Combining Google Maps and the Canvas

124

It also is possible to change the type of map to Satellite and pan the map by clicking

the mouse and then pressing down again. Figure 4-4 shows the effects of changing to

Satellite and panning.

Figure 4-4.  Zooming out and moving west, satellite view

Chapter 4 Map Maker: Combining Google Maps and the Canvas

125

Let me use the interface to change to the third possibility: Kyoto, Japan. This is shown

in Figure 4-5.

Figure 4-5.  Kyoto, Japan

Chapter 4 Map Maker: Combining Google Maps and the Canvas

126

Next, I use the Google Maps feature to change to Map/Terrain in Kyoto. The result is

shown in Figure 4-6.

Figure 4-6.  Base at Kyoto, Japan, Terrain view

Chapter 4 Map Maker: Combining Google Maps and the Canvas

127

Again, notice the small red x indicating the base location and the text at the top of the

screen with the name of the new base location.

The location of each base is determined by the latitude and longitude values for

each of the three values that I have determined. My code is not “asking” Google Maps to

find these locations by name. You may get slightly different results if you type the terms

“Purchase College, NY” and the other locations into Google or Google Maps. To make

this application your own, you would decide on a set of base locations and look up the

latitude and longitude values. I will suggest ways to do this in the next section.

Just in case you are curious, zooming out to the farthest out position on the zoom/

scale produces what is shown in Figure 4-7. This projection exhibits what is called the

Greenland problem. Greenland is not bigger than Africa, but actually about 1/14 times

the size.

Chapter 4 Map Maker: Combining Google Maps and the Canvas

128

Figure 4-7.  Farthest-out view of map

Chapter 4 Map Maker: Combining Google Maps and the Canvas

129

Figure 4-8 shows the map at close to the closest-in limit. The map has also been

changed to the satellite view using the buttons in the upper-left corner.

Figure 4-8.  Zoomed in to where city blocks can be detected, Purchase College base

Chapter 4 Map Maker: Combining Google Maps and the Canvas

130

Lastly, Figure 4-9 shows the map zoomed in to the limit. This is essentially at the

building level. The building houses the School of Natural and Social Sciences, which

holds my office and my usual computer classroom.

Figure 4-9.  Zoomed in all the way

Chapter 4 Map Maker: Combining Google Maps and the Canvas

131

By using the interface to zoom out and pan and zoom in again, I can determine the

distance from any of the base locations to any other location in the world! I also can use

this application to determine latitude and longitude values of any location. You need to

know the latitude and longitude for changing or adding to the list of base locations and

for determining locations for the project in Chapter 5. I review latitude and longitude in

the next section.

Google Maps by itself is an extremely useful application. This chapter and the next

demonstrate how to bring that functionality into your own application. That is, we

combine the general facilities of Google Maps with anything, or almost anything, we can

develop using HTML5 and JavaScript.

�Latitude and Longitude and Other Critical
Requirements
The most fundamental requirement for this project is an understanding of the

coordinate system for geography. Just as a coordinate system is required for specifying

points on a canvas or positions on the screen, it is necessary to use a system for places on

planet Earth. The latitude and longitude system has been developed and standardized

over the last several hundred years. The values are angles, with latitude indicating

degrees from the equator and longitude indicating degrees from the Greenwich prime

meridian in the United Kingdom. The latter is an arbitrary choice that became standard

in the late 1800s.

There is a northern hemisphere bias here: latitude values go from 0 degrees

at the equator to 90 degrees at the North Pole and –90 degrees at the South Pole.

Similarly, longitude values are positive going east from the Greenwich prime meridian

and negative going west. Latitudes are parallel to the equator and longitudes are

perpendicular. Latitudes are often called parallels and typically appear as horizontal

lines, and longitudes are called meridians and typically appear as verticals. This

orientation is arbitrary, but fairly solidly established.

I will use decimal values, which is the default displayed in Google Maps, but you will

see combinations of degree, minute (1/60 of a degree), and second (1/60 of a minute).

It is not necessary that you memorize latitude-longitude values, but it is beneficial to

develop some intuitive sense of the system. You can do this by doing what I call “going

both ways.” First, identify and compare latitude-longitude values for places you know,

Chapter 4 Map Maker: Combining Google Maps and the Canvas

132

and second, pick values and see what they are. For example, the base values for my

version of the project are as follows:

var locations = [

 [51.534467,-0.121631, "Springer Nature (Apress Publishers) London, UK"],

 [41.04796,-73.70539,"Purchase College/SUNY, NY, USA"],

 [35.085136,135.776585,"Kyoto, Japan"]

];

The first thing to notice is that the latitude values are fairly close and the longitude

values are negative and not quite so close. Because I decided to choose as the base

locations, places on three continents, you will need to experiment to see what small

changes in latitude and longitude produce. You can see that all three places are north

of the equator. In longitude, the value for London is close to zero, being close to the

Greenwich prime meridian. You can notice also the longitude for Kyoto is positive and

for the others is negative. This all makes sense, but you need to do your own experiments

to become comfortable with these units.

There are many ways to find the latitude and longitude of a specific location. You can

use Google Maps as follows:

	 1.	 Invoke Google Maps from the square array of dots in Gmail or go

to http://.maps.google.com.

	 2.	 Put a location in the location field. I typed in Statue of Liberty.

	 3.	 Click to get a menu:

Figure 4-10 shows a small window that appears at the bottom of

the map.

Chapter 4 Map Maker: Combining Google Maps and the Canvas

http://maps.google.com

133

Click on What’s Here to get a small window with the latitude and longitude.

Figure 4-10.  Getting latitude-longitude values in Google Maps

Figure 4-11.  Box showing latitude and longitude

Chapter 4 Map Maker: Combining Google Maps and the Canvas

134

Another option is to use Wolfram Alpha (www.wolframalpha.com), as shown in

Figure 4-12, which provides a way to determine latitude and longitude values as well as

many other things.

Figure 4-12.  Results of a query on Wolfram Alpha

Notice the format of the results. This is the degree/minute/second format, with N for

north and W for west. When I click the Show Decimal button, the program displays what

is shown in Figure 4-13.

Chapter 4 Map Maker: Combining Google Maps and the Canvas

http://www.wolframalpha.com

135

Notice that the longitude still appears with W for West as opposed to the negative

value given by Google Maps.

Doing what I call “going in the opposite direction,” you can put latitude and

longitude values into Google Maps. Figure 4-14 shows the results of putting in 0.0 and

0.0. It is a point in the ocean south of Ghana. This is a point on the equator and on the

Greenwich prime meridian.

Figure 4-13.  Decimal results for a query to Wolfram Alpha

Figure 4-14.  The equator at the Greenwich prime meridian

Chapter 4 Map Maker: Combining Google Maps and the Canvas

136

I tried to find a place in England on the Greenwich prime meridian and produced

the result shown in Figure 4-15 when guessing at the latitude of 52.0 degrees.

Figure 4-15.  Results near a place on the Greenwich prime meridian

The A marker indicates the closest place in the Google database to the requested

location. I used the Drop LatLng marker option to reveal the exact latitude and

longitude values.

The critical requirements for this project start off with the task of bringing Google

Maps into a HTML5 application using specified latitude and longitude values. An

additional requirement is producing the shadow/spotlight combination on top of the

map to track the movements of the mouse. I also require a change from the default

cursor for the mouse to something of my own choosing.

Next, I added a requirement to drop markers on the map, but again, with graphical

icons that I picked, not the upside-down teardrop that is standard in Google Maps. The

teardrop marker is nice enough, but my design objective was to be different to show you

how to incorporate your own creativity into an application.

Chapter 4 Map Maker: Combining Google Maps and the Canvas

137

Beyond the graphics, I wanted the users to be able to use the Google Maps devices

and any GUI features I built using HTML5. This all required managing events set up by

the Google Maps API and events set up using HTML5 JavaScript. The responses to events

that I wanted to make the user interface included the following:

•	 Tracking mouse movement with the shadow/spotlight graphic

•	 Responding to a click by placing an x on the map

•	 Retaining the same response to the Google Maps interface (slider,

panning buttons, panning by grabbing the map)

•	 Treating the radio buttons and CHANGE button in the appropriate

manner

Google Maps provides a way to determine distances between locations. Since I

wanted to set up this project to work in terms of the base location, I needed a way to

calculate distances directly.

These are the critical requirements for the map spotlight project. Now I will explain

the HTML5 features I used to build the project. The objective is to use Google Maps

features and JavaScript features, including events, and not let them interfere with each

other. You can use what you learn for this and other projects.

�HTML5, CSS, and JavaScript Features
The challenges for the map-maker project are bringing in the Google Map and then

using the map and canvas and buttons together in terms of appearance and in the

operation of the GUI. I’ll describe the basic Google Maps API and then explain how

HTML5 features provide the partial masking and the event handling.

�The Google Maps API
The Google Maps JavaScript API Version 3 Basics has excellent documentation located

at http://code.google.com/apis/maps/documentation/javascript/basics.html.

You do not need to refer to it right now, but it will help you if and when you decide to

build your own project. It will be especially helpful in producing applications for mobile

devices.

Chapter 4 Map Maker: Combining Google Maps and the Canvas

http://code.google.com/apis/maps/documentation/javascript/basics.html

138

Most APIs are presented as a collection of related objects, each object having

attributes (also known as properties) and methods. The API also may include events and

a method for setting up the event. This is the situation with the Google Maps API. The

important objects are Map, LatLng, and Marker. The method to set up an event is

addListener, and this can be used to set up a response to clicking a map.

The first step to using the Google Maps API is to go to this site to obtain a key:

https://developers.google.com/maps/documentation/javascript/get-api-key.

The code to get access to the API is to modify and then add the following to your

HTML document:

<script async defer src="https://maps.googleapis.com/maps/api/js?key=YOUR_

API_KEY&callback=initMap"

 type="text/javascript"></script>

Note T he first edition of this text used what is termed a “keyless” API. Though
my original code still works on my domain, Google now is stricter. There are quotas
in the use of the features, and though the quotas appear very big, you need to
study the documentation if you are planning production use.

The next step—and this could be all you need if all you want is to bring in a Google

Map—is to set up a call to the Map constructor method. The pseudocode for this is

map = new google.maps.Map(place you are going to put the map, associative

array with options);

Note that there is no harm is making the variable have the name map.

Let’s take up the two parameters one at a time. The place to put the map could be

a div defined in the body of the HTML document. However, I chose to create the div

dynamically. I did this using code in an init function invoked in the usual way, by

setting the onLoad attribute in the body statement. I also wrote code to create a canvas

element inside the div. The code is

 candiv = document.createElement("div");

 �candiv.innerHTML = ("<canvas id='canvas' width='600'

height='400'>No canvas

 </canvas>");

 document.body.appendChild(candiv);

Chapter 4 Map Maker: Combining Google Maps and the Canvas

https://developers.google.com/maps/documentation/javascript/get-api-key

139

 can = document.getElementById("canvas");

 pl = document.getElementById("place");

 ctx = can.getContext("2d");

The can, pl, and ctx are global variables, each available for use by other functions.

Note A lthough I try to use the language “bring access to Google Maps into the
HTML document,” I am guilty of describing a function that “makes” a map. The
Google Maps connection is a dynamic one in which Google Maps creates what are
termed “tiles to be displayed.”

The second parameter to the Map method is an associative array. An associative array

has named elements, not indexed elements. The array for the Map method can indicate

the zoom level, the center of the map, and the map type, among other things. The zoom

level can go from 0 to 18. Level 0 is what is shown in Figure 4-7. Level 18 could show

buildings. The types of maps are ROADMAP, SATELLITE, HYBRID, and TERRAIN. These

are indicated using constants from the Google Maps API. The center is given by a value

of type LatLng, constructed, as you may expect, using decimal numbers representing

latitude and longitude values. The use of an associative array means that we don’t

have to follow a fixed order for parameters, and default settings will be applied to any

parameter we omit.

The start of my makemap function follows. The function is called with two numbers

indicating the latitude and longitude on which to center the map. My code constructs a

LatLng object I name blatlng, sets up the array holding the specification for the map,

and then constructs the map—that is, constructs the portal to Google Maps.

function makemap(mylat,mylong) {

 var marker;

 blatlng = new google.maps.LatLng(mylat,mylong);

myOptions = {

 zoom: 12,

 center: blatlng,

 mapTypeId: google.maps.MapTypeId.ROADMAP

 };

map = new google.maps.Map(document.getElementById("place"), myOptions);

Chapter 4 Map Maker: Combining Google Maps and the Canvas

140

The Map method constructs access to Google Maps starting with a map with the

indicated options in the div with the ID place. The makemap function continues, placing

a marker at the center of the map. This is done by setting up an associative array as the

parameter for the Marker method. The icon marker will be an image I created, named

rxmarker, using an image of my own design, a drawn red x.

marker = new google.maps.Marker({

 position: blatlng,

 title: "center",

 icon: rxmarker,

 map: map });

There is one more statement in the makemap function, but I will explain the rest later.

�Canvas Graphics
The graphic that we want to move with the mouse over the map is similar to the mask used

in Chapter 3 to turn the rectangular video clip into a circular video clip. Both masks can be

described as resembling a rectangular donut: a rectangle with a round hole. We draw the

graphics for the shadow/spotlight using two paths, just like the mask for the video in the

previous chapter. There are two distinct differences, however, between the two situations:

•	 The exact shape of this mask varies. The outer boundary is the

whole canvas, and the location of the hole is aligned with the current

position of the mouse. The hole moves around.

•	 The color of the mask is not solid paint, but a transparent gray.

The canvas starts out on top of the Google Map. I accomplish this by writing style

directives that set the z-index values:

canvas {position:absolute; top: 165px; left: 0px; z-index:100;}

#place {position:absolute; top: 165px; left: 0px; z-index:1;}

The first directive refers to all canvas elements. There is only one in this HTML

document. Recall that the z-axis comes out of the screen toward the viewer, so higher

values are on top of lower values. Note also that we use zIndex in the JavaScript code and

z-index in the CSS. The JavaScript parser would treat the – sign as a minus operator, so

the change to zIndex is necessary. I need to write code that changes the zIndex to get the

event handling that I want for this project.

Chapter 4 Map Maker: Combining Google Maps and the Canvas

141

Figure 4-16.  Shadow/spotlight on one place on the map

Figure 4-16 shows one example of the shadow mask drawn on the canvas. I have set

the base location to Kyoto using the radio buttons. I then used the Google Maps controls

to zoom out, pan over to Tokyo, and zoom in. The canvas is over the map in terms of

the z-index, and the mask is drawn with a gray color that is transparent so the map

underneath is visible.

Chapter 4 Map Maker: Combining Google Maps and the Canvas

142

Figure 4-17 shows another example of the shadow mask drawn on the same map.

This came about because of movement of the mouse by the user handled by Google

Maps and then handled by the JavaScript code to restore the shadow.

Figure 4-17.  Shadow mask over another position on the map

Several topics are interlinked here. Let’s assume that the variables mx and my hold the

position of the mouse cursor on the canvas. I will explain how later in this chapter. The

function drawshadowmask will draw the shadow mask. The transparent gray that is the

color of the mask is defined in a variable I named grayshadow and constructed using the

built-in function rgba. The rgba stands for red-green-blue-alpha. The alpha refers to the

transparency/opacity. A value of 1 for alpha means that the color is fully opaque: solid.

A value of 0 means that it is fully transparent—the color is not visible. Recall also that the

red, green, and blue values go from 0 to 255, and the combination of 255, 255, and 255

Chapter 4 Map Maker: Combining Google Maps and the Canvas

143

Figure 4-18.  Schematic with variable values indicated for mask

would be white. This is a time for experimentation. I decided on the following setting for

the gray/grayish/ghostlike shadow:

var grayshadow = "rgba(250,250,250,.8)";

The function drawshadowmask uses several variables that are constants—they never

change. A schematic indicating the values is shown in Figure 4-18.

The mask is drawn in two parts as was done for the mask for the bouncing video.

You may look back to Figure 3-8 and Figure 3-9. The coding is similar:

function drawshadowmask(mx,my) {

 ctx.clearRect(0,0,600,400);

 ctx.fillStyle = grayshadow;

 ctx.beginPath();

 ctx.moveTo(canvasAx,canvasAy);

 ctx.lineTo(canvasBx,canvasBy);

Chapter 4 Map Maker: Combining Google Maps and the Canvas

144

 ctx.lineTo(canvasBx,my);

 ctx.lineTo(mx+holerad,my);

 ctx.arc(mx,my,holerad,0,Math.PI,true);

 ctx.lineTo(canvasAx,my);

 ctx.lineTo(canvasAx,canvasAy);

 ctx.closePath();

 ctx.fill();

 ctx.beginPath();

 ctx.moveTo(canvasAx,my);

 ctx.lineTo(canvasDx,canvasDy);

 ctx.lineTo(canvasCx,canvasCy);

 ctx.lineTo(canvasBx,my);

 ctx.lineTo(mx+holerad,my);

 ctx.arc(mx,my,holerad,0,Math.PI,false);

 ctx.lineTo(canvasAx,my);

 ctx.closePath();

 ctx.fill();

}

Now we move on to the red light bulb.

�Cursor
The cursor—the small graphic that moves on the screen when you move the mouse—can

be set in the style element or in JavaScript. There are several built-in choices for the graphic

(e.g., crosshair and pointer), and we also can refer to our own designs for a custom-made

cursor, which is what I demonstrate in this project. I included the statement

can.onmousedown = function () { return false; } ;

in the init function to prevent a change to the default cursor when pressing down on

the mouse. This may not be necessary since the default may not be triggered.

To change the cursor for moving the mouse to something that conveyed a spotlight,

I created a picture of a red compact fluorescent light bulb and saved it in the file light.

gif. I then used the following statement in the function showshadow. The showshadow

function has been set as the event handler for mousemove

can.style.cursor = "url('light.gif'), pointer";

Chapter 4 Map Maker: Combining Google Maps and the Canvas

145

to indicate that JavaScript should use that address for the image for the cursor when on

top of the can element. Furthermore, if the light.gif file is not available, the statement

directs JavaScript to use the built-in pointer icon. This is similar to the way that fonts can

be specified with a priority listing of choices. The variable can has been set to reference

the canvas element. The cursor will not be used when the canvas has been pushed under

the Google Map, as will be discussed in the next section.

�JavaScript Events
The handling of events—namely mouse events, but also events for changing zoom on

the Google Map or clicking the radio buttons—seemed the most daunting when I started

work on this project. The critical consideration is whether the event is to be handled by

Google Maps or by my JavaScript code. However, the actual implementation turned out

to be straightforward. In the init function and the makemap function, I write code to set

up event handling for movement of the mouse, mouse button down, and mouse button

up, all in terms of the canvas element. For example, in the init function, there is

 can.addEventListener('mousemove',showshadow);

 can.addEventListener('mousedown',pushcanvasunder);

 can.addEventListener("mouseout",clearshadow);

The showshadow function, as indicated previously, calls the drawshadowmask

function. I could have combined these two functions, but dividing tasks into smaller

tasks generally is a good practice. The showshadow function determines the mouse

position, makes an adjustment so the light bulb base is at the center of the spotlight, and

then makes the call to drawshadowmask:

function showshadow(ev) {

 var mx;

 var my;

 if (ev.layerX || ev.layerX == 0) {

 mx= ev.layerX;

 my = ev.layerY;

 }

 else if (ev.offsetX || ev.offsetX == 0) {

 mx = ev.offsetX;

 my = ev.offsetY;

 }

Chapter 4 Map Maker: Combining Google Maps and the Canvas

146

 can.style.cursor = "url('light.gif'), pointer";

 mx = mx+10;

 my = my + 12;

 drawshadowmask(mx,my);

}

The if statement mentioning ev.layerX and ev.layerY is for older Firefox browsers.

It probably could be removed.

Now I need to determine what I want to do when the user presses down on the

mouse. I decide that I want the shadow to go away and the map to be displayed in its full

brightness. In addition to the appearance of things, I also want the Google Maps API to

resume control. A critical reason for wanting the Google Maps API to take over is that I

want to place a marker on the map, as opposed to the canvas, to mark a location. This is

because I want the marker to move with the map, and that would be very difficult to do

by drawing on the canvas. I would need to synchronize the marker on the canvas with

panning and zooming of the map. Instead, the API does all this for me. In addition, I

need the Google Maps API to produce latitude and longitude values for the location.

The way to put Google Maps back in control, so to speak, is to “push the canvas

under.” The function is

function pushcanvasunder(ev) {

 can.style.zIndex = 1;

 pl.style.zIndex = 100;

}

The operation of pushing the canvas under or bringing it back on top is not

instantaneous. I am open to suggestions on (1) how to define the interface and (2) how

to implement what you have defined. There is room for improvement here.

One more situation to take care of is to decide what I want to occur if and when the

user moves the mouse off of the canvas? The mouseout event is available as something to

be listened for, so I wrote the code setting up the event (see the can.addEventListener

statements shown previously) to be handled by the clearshadow function. The clearshadow

function accomplishes just that—it clears the whole canvas, including the shadow:

function clearshadow(ev) {

 ctx.clearRect(0,0,600,400);

}

Chapter 4 Map Maker: Combining Google Maps and the Canvas

147

In the function that brings in the Google Map, I set up an event handler for mouseup

for maps.

listener = google.maps.event.addListener(map, 'mouseup', function(event) {

 checkit(event.latLng);

 });

The call to addListener, a method that is part of the Google Maps API as opposed to

JavaScript proper, sets up the call to the checkit function. To repeat what has been said

in a more informal way: this call to google.maps.event.addListener sets up the Google

API to listen for a mouseup event on the map. The following statement causes JavaScript

to listen for a mouseout event on can (the canvas).

can.addEventListener("mouseout",clearshadow);

The checkit function is invoked using an attribute of the event object as a

parameter. As you can guess, event.latLng is the latitude and longitude values at the

position of the mouse when the mouse button was released on the map object. The

checkit function will use those values to calculate the distance from the base location

and to print out the values along with the distance on the screen. The code invokes a

function I wrote that rounds the values. I did this to avoid displaying a value with many

significant digits, more than is appropriate for this project. The Google Maps API marker

method provides a way to use an image of my choosing for the marker, this time a black,

hand-drawn x, and to include a title with the marker. The title is recommended to make

applications accessible for people using screen readers, although I cannot claim that

this project would satisfy anyone in terms of accessibility. It is possible to produce the

screen shown in Figure 4-19. Note the x near Mt. Kisco, where I live. The message at the

top indicates the length of my commute in miles. The code can be changed to calculate

miles or kilometers.

Chapter 4 Map Maker: Combining Google Maps and the Canvas

148

The checkit function, called with a parameter holding the latitude and longitude

value, follows:

function checkit(clatlng) {

 var distance = dist(clatlng,blatlng);

 distance = round(distance,2);

 var distanceString = String(distance)+" km";

 marker = new google.maps.Marker({

 position: clatlng,

Figure 4-19.  Title indicating distance shown on map

Chapter 4 Map Maker: Combining Google Maps and the Canvas

149

 title: distanceString,

 icon: bxmarker,

 map: map });

 var clat = clatlng.lat();

 var clng = clatlng.lng();

 clat = round(clat,4);

 clng = round(clng,4);

 document.getElementById("answer").innerHTML =

"The distance from base to most recent marker ("+clat+", "+clng+") is

"+String(distance) +" miles.";

//change miles to km depending on value used for R in the dist function

 can.style.zIndex = 100;

 pl.style.zIndex = 1;

}

Even though I omit most comments in the text, I felt compelled to keep the

comments concerning miles versus kilometers. I advise you to do the same for such

matters in your work.

Notice that the last thing that the function does is put the canvas back on top of the map.

The CHANGE button and the radio buttons are implemented using standard HTML

and JavaScript. The form is produced using the following HTML coding:

<form name="f" onSubmit=" return changebase();">

 �<input type="radio" name="loc" /> Springer Nature (Apress Publishers)

London, UK

 �<input id="first" type="radio" name="loc" /> Purchase College/SUNY, NY,

USA

 <input type="radio" name="loc" /> Kyoto, Japan

 <input type="submit" value="CHANGE">

</form>

The function changebase is invoked when the submit button, labeled CHANGE, is

clicked. The changebase function determines which of the radio buttons was checked

and uses the Locations table to pick up the latitude and longitude values. It then makes

a call to makemap using these values for parameters. This way of organizing data is called

parallel structures: the locations array elements correspond to the radio buttons. The

last statement sets the innerHTML of the header element to display text, including the

name of the selected base location.

Chapter 4 Map Maker: Combining Google Maps and the Canvas

150

function changebase() {

 var mylat;

 var mylong;

 for(var i=0;i<locations.length;i++) {

 if (document.f.loc[i].checked) {

 mylat = locations[i][0];

 mylong = locations[i][1];

 makemap(mylat,mylong);

 document.getElementById("header").innerHTML =

 �"Base location (small red x) is

"+locations[i][2];

 }

 }

 return false;

}

�Calculating Distance and Rounding Values for Display
Google Maps, as many of us know, provides information on distances and even

distinguishes between walking and driving. For this application, I needed more control

on specifying the two locations for which I wanted the distance calculated, so I decided

to develop a function in JavaScript. Determining the distance between two points, each

representing latitude and longitude values, is done using the spherical law of cosines.

My source was http://www.movable-type.co.uk/scripts/latlong.html. Here is the

code. Notice that to produce a value in kilometers, you use one value for R and for miles

the value that is commented. If and when you switch to miles, you need to make sure the

message displayed says miles.

function dist(point1, point2) {

 �var R = 6371; // km Need to make sure this syncs with the message

displayed re: distance.

 // var R = 3959; // miles

 var lat1 = point1.lat()*Math.PI/180;

 var lat2 = point2.lat()*Math.PI/180 ;

 var lon1 = point1.lng()*Math.PI/180;

 var lon2 = point2.lng()*Math.PI/180;

Chapter 4 Map Maker: Combining Google Maps and the Canvas

http://www.movable-type.co.uk/scripts/latlong.html

151

 var d = Math.acos(Math.sin(lat1)*Math.sin(lat2) +

 Math.cos(lat1)*Math.cos(lat2) *

 Math.cos(lon2-lon1)) * R;

 return d;

 }

Caution I don’t include many comments in the code because I annotate each line
in the chapter’s tables. However, comments are important. I strongly recommend
leaving the comments on km and miles in the dist function so you can adjust
your program as appropriate. Alternatively, you could display both values or give
the user a choice.

The last function is for rounding values. When a quantity is dependent on a person

moving a mouse, you shouldn’t display a value to a great number of decimal places.

However, keep in mind that latitude and longitude represent big units. I decided

I wanted the distances to be shown with two decimal places and the latitude and

longitude with four.

The function I wrote is quite general. It takes two parameters, one the number num

and the other places, indicating how many decimal places to take the value. You can use

it in other circumstances. It rounds up or down, as appropriate, by adding the value I call

the increment and then calculating the biggest integer not bigger than the value. So

•	 round(9.147,2) will produce 9.15

•	 round(9.143, 2) will produce 9.14

The way the code works is first to determine what I term the factor, 10 raised to the

desired number of places. For 2, this will be 100. I then calculate the increment. For

two places, this will be 5 / 100 * 10, which is 5 / 1,000, which is .005. My code does the

following:

	 1.	 Adds the increment to the original number.

	 2.	 Multiplies the result by the factor.

	 3.	 Calculates the largest whole number not bigger than the result

(this is called the floor)—producing a whole number.

	 4.	 Divides the result by the factor.

Chapter 4 Map Maker: Combining Google Maps and the Canvas

152

The code follows:

function round (num,places) {

 var factor = Math.pow(10,places);

 var increment = 5/(factor*10);

 return Math.floor((num+increment)*factor)/factor;

}

I use the round function to round off distances to two decimal places and latitude

and longitude to four decimal places.

Tip  JavaScript has a method called toFixed that essentially performs the task
of my round. If num holds a number—say, 51.5621—then num.toFixed() will
produce 51 and num.toFixed(2) will produce 51.56. I’ve read that there can be
inaccuracies with this method, so I chose to create my own function. You may be
happy to go with toFixed() in your own applications, though.

With the explanation of the relevant HTML5 and Google Maps API features, we can

now put it all together.

�Building the Application and Making It Your Own
The map spotlight application sets up the combination of Google Maps functionality

with HTML5 coding. A quick summary of the application is the following:

	 1.	 init: Initialization, including bringing in the map (makemap)

and setting up mouse events with handlers: showshadow,

pushcanvasunder, and clearshadow

	 2.	 makemap: Brings in a map and sets up event handling, including

the call to checkit

	 3.	 showshadow: Invokes drawshadowmask

	 4.	 pushcanvasunder: Enables events on the map

	 5.	 checkit: Calculates distance, adds a custom marker, and displays

distance and rounded latitude and longitude

Chapter 4 Map Maker: Combining Google Maps and the Canvas

153

The function table describing the invoked/called by and calling relationships

(Table 4-1) is the same for all the applications.

Table 4-1.  Functions in the Map Maker Project

Function Invoked/Called By Calls

init Invoked by action of the onLoad attribute in the <body>

tag

makemap

pushcanvasunder Invoked by action of addEventListener called in init

clearshadow Invoked by action of addEventListener called in init

showshadow Invoked by action of addEventListener called in init drawshadowmask

drawshadowmask Called by showshadow

makemap Called by init

checkit Called by action of addEventListener called in

makemap

round, dist

round Called by checkit (three times)

dist Called by checkit

changebase Called by action of onSubmit in <form> makemap

Table 4-2 shows the code for the Map Maker application, named mapspotlight.html.

Chapter 4 Map Maker: Combining Google Maps and the Canvas

154

Table 4-2.  Complete Code for the mapspotlight.html Application

Code Line Description

<!DOCTYPE html> Header

<html> Opening html tag

<head> Opening head tag

<title>Spotlight </title> Complete title

<meta charset="UTF-8"> Meta tag

<style> Opening of style element

header {font-family:Georgia,"Times

New Roman",serif;

Set fonts for the heading

 font-size:16px; Font size

 display:block;} Line breaks before and after

canvas {position:absolute; top:

165px; left:0px;

Style directive for the single canvas element;

position slightly down the page

z-index:100;} Initial setting for canvas is on top of map

#place {position:absolute; top:

165px; left: 0px;

Style directive for the div holding the Google

Map; position exactly the same as the canvas

z-index:1;} Initial setting to be under canvas

</style> Close style element

<script async defer src="https://

maps.googleapis.com/maps/api/js?key=

YOUR_API_KEY&callback=initMap"

 type="text/javascript"></script>

Bring in the external script element holding the

Google Maps API; Note: you need to get your

own key to run the program

<script type="text/javascript"

charset="UTF-8">

Opening script tag

var locations = [Define set of base locations; Note: you need to

coordinate with radio buttons in body

(continued)

Chapter 4 Map Maker: Combining Google Maps and the Canvas

155

Table 4-2.  (continued)

Code Line Description

[51.534467,-0.121631, "Springer Nature

(Apress Publishers) London, UK"],

Latitude, longitude name publisher office in

London

[41.04796,-73.70539,"Purchase

College/SUNY, NY, USA"],

. . . Purchase College

[35.085136,135.776585,"Kyoto, Japan"] . . . Kyoto

]; Close array of locations

var candiv; Used to hold div holding the canvas

var can; Reference canvas element

var ctx; Reference context of canvas; used for all

drawing

var pl; Reference the div holding the Google Map

function init() { Function header for init

 var mylat; Will hold latitude value

 var mylong; Will hold longitude value

 candiv = document.

createElement("div");

Create a div

 �candiv.innerHTML = ("<canvas

id='canvas' width='600'

height='400'>No canvas </canvas>");

Set its contents to be a canvas element

 document.body.appendChild(candiv); Add to the body

 �can = document.

getElementById("canvas");

Set reference to the canvas

 pl = document.

getElementById("place");

Set reference to the div holding the Google Map

(continued)

Chapter 4 Map Maker: Combining Google Maps and the Canvas

156

Table 4-2.  (continued)

Code Line Description

 ctx = can.getContext("2d"); Set the context

 can.onmousedown = function ()

{ return false; } ;

Prevent change of cursor to default

 �can.addEventListener('mousemove',

showshadow);

Set event handling for mouse moving

 �can.addEventListener('mousedown',

pushcanvasunder);

Set event handling for pushing down on mouse

button

 �can.addEventListener("mouseout",

clearshadow);

Set event handling for moving mouse off of the

canvas

 mylat = locations[1][0]; Set the latitude to be the latitude of the first

(middle) location

 mylong = locations[1][1]; Set the longitude to be the longitude of the first

(middle) location

document.getElementById("first").

checked="checked";

Set middle radio button to display as checked

 makemap(mylat,mylong); Invoke function to make a map (bring in Google

Maps at specified location)

} Close init function

function pushcanvasunder(ev) { Header for pushcanvas function, called with

parameter referencing the event

 can.style.zIndex = 1; Push canvas down

 pl.style.zIndex = 100; Set map div up

} Close pushcanvasunder function

function clearshadow(ev) { Header for clearshadow function, called with

parameter referencing the event

 ctx.clearRect(0,0,600,400); Clear canvas (erase shadow mask)

} Close clearshadow function

(continued)

Chapter 4 Map Maker: Combining Google Maps and the Canvas

157

Table 4-2.  (continued)

Code Line Description

function showshadow(ev) { Header for showshadow function, called with

parameter referencing the event

 var mx; Will be used to hold horizontal position of mouse

 var my; Will be used to hold vertical position of mouse

 if (ev.layerX || ev.layerX == 0) { Does this browser use layerX? Note: this is for

older browsers

 mx = ev.layerX; If so, use it to set mx . . .

 my = ev.layerY; . . . and my

 �} else if (ev.offsetX || ev.offsetX

== 0) {

Try offset. Note: this works on current

browsers

 mx = ev.offsetX; If so, use it to set mx . . .

 my = ev.offsetY; . . . and my

 } Close clause

 �can.style.cursor = "url('light.gif'),

pointer";

Set up cursor to be light.gif if available;

otherwise use pointer

 mx = mx+10; Make rough correction to make center of light at

base of light bulb horizontally and . . .

 my = my + 12; . . . vertically

 drawshadowmask(mx,my); Invoke drawshadowmask function at the

modified (mx,my)

} Close showshadow function

var canvasAx = 0; Constant for mask: upper-left x

var canvasAy = 0; Upper-left y

var canvasBx = 600; Upper-right x

var canvasBy = 0; Upper-right y

var canvasCx = 600; Lower-right x

(continued)

Chapter 4 Map Maker: Combining Google Maps and the Canvas

158

Table 4-2.  (continued)

Code Line Description

var canvasCy = 400; Lower-right y

var canvasDx = 0; Lower-left x

var canvasDy = 400; Lower-left y

var holerad = 50; Constant radius for hole in shadow (radius of

spotlight)

var grayshadow = "rgba(250,250,250,.8)"; Color for faint shadow; note alpha of .8

function drawshadowmask(mx,my) { Header for drawshadowmask function;

parameters hold center of donut hole

 ctx.clearRect(0,0,600,400); Erase whole canvas

 ctx.fillStyle = grayshadow; Set color

 ctx.beginPath(); Start first (top) path

 ctx.moveTo(canvasAx,canvasAy); Move to upper-left corner

 ctx.lineTo(canvasBx,canvasBy); Draw over to upper-right corner

 ctx.lineTo(canvasBx,my); Draw to vertical point specified by my parameter

 ctx.lineTo(mx+holerad,my); Draw over to the left to edge of hole

 �ctx.arc(mx,my,holerad,0,Math.

PI,true);

Draw semicircular arc

 ctx.lineTo(canvasAx,my); Draw to left side

 ctx.lineTo(canvasAx,canvasAy); Draw back to start

 ctx.closePath(); Close path

 ctx.fill(); Fill in

 ctx.beginPath(); Start of second (lower) path

 ctx.moveTo(canvasAx,my); Start at point on left side indicated by my

parameter

 ctx.lineTo(canvasDx,canvasDy); Draw to lower-left corner

 ctx.lineTo(canvasCx,canvasCy); Draw to lower-right corner

(continued)

Chapter 4 Map Maker: Combining Google Maps and the Canvas

159

Table 4-2.  (continued)

Code Line Description

 ctx.lineTo(canvasBx,my); Draw to point on right edge

 ctx.lineTo(mx+holerad,my); Draw to left to edge of hole

 �ctx.arc(mx,my,holerad,0,

Math.PI,false);

Draw semicircular arc

 ctx.lineTo(canvasAx,my); Draw to left edge

 ctx.closePath(); Close path

 ctx.fill(); Fill in

} Close drawshadowmask function

var listener; Variable set by addListener call; not used again

var map; Holds map

var blatlng; Holds base latitude-longitude object

var myOptions; Holds associative array used for map

var rxmarker = "rx1.png"; Holds filename for red x image

var bxmarker = "bx1.png"; Holds filename for black x image

function makemap(mylat,mylong) { Header for makemap function; parameters hold

location of center of the map

 var marker; Will hold marker created for center

 �blatlng = new google.maps.

LatLng(mylat,mylong);

Build a LatLng object (special data type

for the API)

 myOptions = { Set associative array

 zoom: 12, Zoom setting (can be 0 to 18)

 center: blatlng, Center

 �mapTypeId: google.maps.MapTypeId.

ROADMAP

Type of map

 }; Close myOptions array

(continued)

Chapter 4 Map Maker: Combining Google Maps and the Canvas

160

Table 4-2.  (continued)

Code Line Description

 �map = new google.maps.Map(document.

getElementById("place"), myOptions);

Invoke the API to bring in a map at indicated

place

 marker = new google.maps.Marker(Place marker in center of map; marker method

takes an associative array as its parameter;

Note: there is alternative using setMap method

of marker object

 { Start of associative array

 position: blatlng, Set the position

 title: "center", Set the title

 icon: rxmarker, Set the icon

 map: map Set the map named parameter to the variable

named map

 } Close the associative array, which is the

parameter to the call to Marker

); Close the call to the Marker method

 �listener = google.maps.event.

addListener(

Set up event handling (the three following

parameters); this is a Google Maps event

 map, The object, namely the map

 'mouseup', The specific event

 function(event) { An autonomous function (defined directly as a

parameter in addListener)

 checkit(event.latLng); Call checkit with the indicated

latitude-longitude object

 } Close the function definition

); Close the call to addListener

} Close the makemap function

(continued)

Chapter 4 Map Maker: Combining Google Maps and the Canvas

161

Table 4-2.  (continued)

Code Line Description

function checkit(clatlng) { Function header for checkit; called with the

latitude-longitude object

 �var distance = dist

(clatlng,blatlng);

Invoke the dist function to calculate distance

between the clicked position and the base

 var marker; Will hold newly created marker

 distance = round(distance,2); Round the value

 �var distanceString = String

(distance)+" km";

Set distanceString to be the display

 marker = new google.maps.Marker(Invoke the Marker method, which takes an

associative array as its parameter

 { Start of associative array

 position: clatlng, Set position

 title: distanceString, Set title

 icon: bxmarker, Set icon to be black x

 map: map Set map element of associative array to the

value of the variable named map

 } Close associative array

); Close call to Marker method

 var clat = clatlng.lat(); Extract the latitude value

 var clng = clatlng.lng(); Extract the longitude value

 clat = round(clat,4); Round value to four decimal places

 clng = round(clng,4); Round value to four decimal places

 �document.getElementById("answer").

innerHTML =

Set up text onscreen . . .

(continued)

Chapter 4 Map Maker: Combining Google Maps and the Canvas

162

Table 4-2.  (continued)

Code Line Description

 "The distance from base to most

recent marker ("

 + clat+", "+clng+") is

"+String(distance) +" km.";

. . . to be calculated and formatted information

 can.style.zIndex = 100; Set canvas to be on top

 pl.style.zIndex = 1; Set pl (holding map) to be underneath

} Close checkit function

function round (num,places) { Header for function to round values

 var factor = Math.pow(10,places); Determine factor from number of places

 var increment = 5/(factor*10); Determine the increment to round up or down

 �return Math.floor

((num+increment)*factor)/factor;

Do calculation

} Close round function

function dist(point1, point2) { Function header for dist (distance) function

 // spherical law of cosines,

 // from

 // �http://www.movable-type.co.uk/

scripts/latlong.html

Attribution for my source; this is standard

mathematics

 var R = 6371; // km Factor used to produce answer in kilometers

 // var R = 3959; // miles Commented out, but keep just in case you want to

give answer in miles, which I did in Figure 4-19

 var lat1 = point1.lat()*Math.PI/180; Convert value to radians

 var lat2 = point2.lat()*Math.PI/180 ; Convert value to radians

 var lon1 = point1.lng()*Math.PI/180; Convert value to radians

 var lon2 = point2.lng()*Math.PI/180; Convert value to radians

 var d = Calculation . . .

(continued)

Chapter 4 Map Maker: Combining Google Maps and the Canvas

http://www.movable-type.co.uk/scripts/latlong.html
http://www.movable-type.co.uk/scripts/latlong.html

163

Table 4-2.  (continued)

Code Line Description

 �Math.acos(Math.sin(lat1)*Math.

sin(lat2) + Math.cos(lat1)*Math.

cos(lat2) * Math.cos(lon2-lon1)) * R;

Use trigonometry to determine distance

 return d; Return result

 } Close dist function

function changebase() { Header for changebase function

 var mylat; Will hold new base location latitude

 var mylong; Will hold new base location longitude

 �for(var i=0;i<locations.

length;i++) {

for loop to determine which radio button is

checked

 �if (document.f.loc[i].

checked) {

Is this one checked?

 mylat = locations[i][0]; If so, set mylat

 mylong = locations[i][1]; Set mylong

 makemap(mylat,mylong); Invoke makemap

 �document.getElementById

("header").

innerHTML = "Base location (small

red x) is "+locations[i][2];

Change text in header to show the name

 } Close if true clause

 } Close for loop

 return false; Return false to present refresh

} Close function

</script> Closing script tag

</head> Closing head tag

<body onLoad="init();"> Opening body tag; include onLoad to invoke init

(continued)

Chapter 4 Map Maker: Combining Google Maps and the Canvas

164

Table 4-2.  (continued)

Code Line Description

<header id="header">Base location

(small red x) </header>

Semantic header element

<div id="place" style="width:600px;

height:400px"></div>

div to hold Google Maps

<div id="answer"></div> div to hold information on clicked locations

Change base location:
 Text

<form name="f" onSubmit=" return

changebase();">

Start of form for changing base; Note: you need

to coordinate with locations array in the script

element

 <input type="radio" name="loc" />

Springer Nature (Apress Publishers)

London, UK

Radio button choice

 <input id=”first” type="radio"

name="loc" /> Purchase College

Radio button choice; given ID to be set as

checked at opening

 <input type="radio" name="loc" />

Kyoto, Japan

Radio button choice

<input type="submit" value="CHANGE"> The button to make the change

</form> Closing form tag

</body> Closing body tag

</html> Closing html tag

Chapter 4 Map Maker: Combining Google Maps and the Canvas

165

You need to decide on your set of base locations. Again, there is nothing special

about three. Your choices may be much closer. If your base list is too large, you may

consider using <optgroup> to produce a drop-down list. In any case, you need to define

a set of locations. Each location has two numbers—latitude and longitude—and a string

of text comprising the name. Some of the text is repeated in the HTML in the form in the

body element.

�Testing and Uploading the Application
This project consists of the HTML file and three image files. For my version of the

project, the image files were the light bulb (light.gif), the red x (rx1.png), and the

black x (bx1.png). There is nothing special about these image file types. You can use

whatever you like. It could be argued that my x markers are too tiny, so think about your

customers when deciding what to do.

This application does require you to be online to test since that is the only way to

contact Google Maps.

�Summary
In this chapter, you learned how to do the following:

•	 Use the Google Maps API.

•	 Combine the use of the Google Maps API with your own JavaScript

coding using canvas graphics. That is, produce a GUI that includes

Google Maps events and HTML5 events.

•	 Draw using the alpha setting controlling transparency/opacity.

•	 Change to a custom-made cursor.

•	 Calculate distances between geographic points.

•	 Round off decimal values for suitable display.

The next chapter describes another project using Google Maps. You will learn how to

build an application in which you can associate a picture, a video clip, or a picture-and-

audio-clip combination with specific geographic locations, and then you’ll see how to

display and play the specified media when a user clicks at or near the locations on a map.

Chapter 4 Map Maker: Combining Google Maps and the Canvas

167
© Jeanine Meyer 2018
J. Meyer, HTML5 and JavaScript Projects, https://doi.org/10.1007/978-1-4842-3864-6_5

CHAPTER 5

Map Portal: Using
Google Maps to Access
Your Media
In this chapter, you will learn the following:

•	 Using the Google Maps API to play and display video, audio, and

images

•	 Creating HTML5 markup dynamically

•	 Separating the program from descriptions of content

•	 Building a geography game

�Introduction
The project in this chapter uses the Google Maps API as a way to play video, display

images, or play audio and display an image, all based on geographic locations. You can

use this project as a model to build a study of a geographic area or report on a business

or vacation trip, or you can develop it into a more elaborate geography quiz. As was the

case with Chapter 4, the main lessons concern integrating use of the Google Maps API

with your own JavaScript, in particular, presenting images, audio and video. The example

for this chapter is a quiz application. I have acquired media, such as video files, audio

files, and image files, and I have defined in the code an association between the media

and specific geographic locations. To give you an idea of what I mean, for my projects,

the associations between a target location (which is given in latitude and longitude

coordinates in the code) and media are shown in Table 5-1.

168

The application proceeds smoothly with the different types of media. This is due to the

features of HTML5 and, I say modestly, my programming. (In fact, modesty is called for:

I needed to make a small modification to the program because of significant differences

in image dimensions when I made a change from a smaller picture to a larger one.) The

media information along with the questions and locations are stored in a separate file.

It still is recommended that you supply multiple video and audio formats to make

sure your application will work in the different browsers. The media types recognized by

browsers may change so that fewer types are required, but this is not the case at this time.

The application is a simple quiz. It consists of two files: mapmediaquiz.html and

mediaquizcontent.js. The mediaquizcontent.js file contains information connecting

the media to the locations and also contains the text for the questions.

Figure 5-1 shows the opening screen for the quiz.

Table 5-1.  Outline of Content

Description of Location Media

Purchase College, NY, USA (Student Services

Building)

Starting location: no media

Mount Kisco, NY, USA Picture of Esther and an audio file of her playing

piano

Purchase College/NY, USA (Natural Sciences

Building)

Video of LEGO Robotics

Statue of Liberty, New York City, USA Video of fireworks

Miyajama, Japan Picture of the Great Torii

Figure 5-1.  Opening screen for quiz

Chapter 5 Map Portal: Using Google Maps to Access Your Media

169

The player now attempts to answer the question by determining the location and

clicking on the map. Figure 5-2 shows what happens when I just make a click on the

Purchase campus. This is not a good answer, which the program detects.

Notice that a small x has appeared where I clicked, but it is not sufficiently close to the

correct location. I move the map and try again and Figure 5-3 shows the result of clicking

the screen, but not sufficiently close to the target location. Notice that I have panned

the map, moving it to the north. There is an option for the player to get a hint. When I

clicked on the Hint button, Figure 5-3 appeared. This is a very strong hint, and readers are

encouraged to devise a way of helping out the player without giving the answer.

Figure 5-2.  Result of clicking at Purchase College

Figure 5-3.  Result of clicking the Hint button

Chapter 5 Map Portal: Using Google Maps to Access Your Media

170

When I follow the directions to click on the red x, Figure 5-4 shows the result. Notice

also the audio control, providing a way to pause and resume playing and also change

the speaker volume. The controls for audio (and video) will be different in the different

browsers, but the functionality is the same. The audio starts playing immediately. Notice

also that the next question appears.

Because I know where the locations are, I know to zoom out to get to the next

location. Figure 5-5 shows the results of using the Google Maps interface to accomplish

this. The audio track continues playing and I still see the picture.

Figure 5-6 shows the result of moving the map to the south and then zooming in back

to the Purchase campus where a video produced by students shows a LEGO Mindstorms

robot traversing a maze.

Figure 5-4.  Image-and-audio combination

Figure 5-5.  Zooming out in preparation for a pan south

Chapter 5 Map Portal: Using Google Maps to Access Your Media

171

The next location is the Statue of Liberty. Notice that when I click close to that

location, a pop-up label set by Google appears.

The last question requires going across country and across to the Pacific to locate

Miyajama (which I had been told about by Takashi, also the supplier of the photo).

Figure 5-8 shows the results of the first steps.

Figure 5-6.  Correctly locating (close enough) the LEGO robots, so a video plays

Figure 5-8.  Zooming out and then in on Japan

Figure 5-7.  Zooming out, panning south, and then zooming in to click at the
Statue of Liberty

Chapter 5 Map Portal: Using Google Maps to Access Your Media

172

Again, the results of the prior question still appear. I press the Hint button and see

what is shown in Figure 5-9.

When I click on the screen in the place suggested by the hint, Figure 5-10 appears.

This is a major local and global tourist attraction in Japan.

At this point, I need to admit that my original code could not handle the very nice

and very large image furnished by Takashi. It was too big for the coding I used, which

worked well enough with small images. Figure 5-11 shows what happened when I

included the Great Torii question and the photo of Miyajama with my original code. This

certainly was disappointing. It was only the upper-left corner of the image.

Figure 5-9.  Result of clicking on the Hint button

Figure 5-10.  The Great Torii

Chapter 5 Map Portal: Using Google Maps to Access Your Media

173

My original statement:

 ctx.drawImage(img1,0,0);

drew only the upper corner from the picture onto the canvas. Instead, I needed to write

JavaScript that determined how to scale the picture onto the 400x400 canvas, performing

scaling while also preserving the aspect ratio. The following does the trick:

 var iw = img1.width;

 var ih = img1.height;

 var aspect = iw/ih;

 if (iw>=ih) {

 if (iw>400){

 tw = 400;

 th = 400/aspect;

 }

 else {

 tw = iw;

 th = ih;

 }

 }

 else {

 if (ih>400){

 th = 400;

 tw = 400*aspect;

 }

Figure 5-11.  Result of original coding for showing images

Chapter 5 Map Portal: Using Google Maps to Access Your Media

174

 else {

 th = ih;

 tw = iw;

 }

 }

 ctx.drawImage(img1,0,0,iw,ih,0,0,tw,th);

Figure 5-12 indicates the action of the code. An image with original width equal

to iw and height equal to ih is scaled down to fit in the 400 by 400 canvas. The final

dimensions are indicated by tw and th. This code produced what is shown in Figure 5-10.

With this introduction, I’ll go on to discuss the project history and the critical

requirements.

Figure 5-12.  Diagram showing relationship of source and target width and height
values

Chapter 5 Map Portal: Using Google Maps to Access Your Media

175

�Project History and Critical Requirements
A senior at Purchase College had collected and made video clips and photographs about

the ethnic neighborhoods of Queens, New York and wanted a way to present the work.

The Google Maps API and the new facilities in HTML5 seemed perfect for the task. Keep

in mind that the student only needed a way to present the work on a computer she set up

at the senior project show, so the issue of noncompliant browsers was not a concern. The

critical requirements include what is supplied by the Google Maps API. As you learned

in the previous chapter, we can write code to access a map centered at a specified

geographic location, set at an initial zoom level, and showing views of roads or satellite

or terrain or a hybrid. In addition, the API provides a way to respond to the event of the

viewer clicking the map. We need a way to define specific locations to be compared with

the location corresponding to the viewer’s click.

My first system for the student just used video and images. I later decided to add the

image-and-audio combination. The critical requirement for the application is displaying

and playing the designated media at the correct time and stopping and removing the

media when appropriate, such as when it is time for the next presentation.

After helping with the student project, I thought of changes. The first one was the

addition of the image-and-audio combination. I decided I did not want audio just by

itself. The next change was to separate the specific content from the general coding. This,

in turn, required a way to create markup for video and audio elements dynamically.

I always like games and lessons, and it seemed like a natural step to build an

application with questions or prompts for the viewer—now best described as the player

or student. The player gives the answer by finding the right position on the map. Any

application like this has a requirement to define a tolerance with respect to the answers.

The viewer/player/student cannot be expected to click exactly on the correct spot.

When testing the quiz, I realized I needed some way to help the player get past a

particularly difficult question. Because I am a teacher, I decided to show the player the

answer, rather than just skipping the question. However, as I indicated earlier, you may

be able to devise a better way to produce hints.

Although it is not apparent when playing the game, the separation of the questions,

locations (the answers), and the media made it easy to put together a totally different

quiz. However, as I indicated, I did need to made some adaption when I decided to

incorporate pictures of greatly different sizes and shapes.

Having described the critical requirements, the next section contains an explanation

of the specific HTML5 features that can be used to build the projects.

Chapter 5 Map Portal: Using Google Maps to Access Your Media

176

�HTML5, CSS, and JavaScript Features
Like the map maker project in Chapter 4, these projects are implemented by combining

the use of the Google Maps API with features of HTML5. The combination for this

project is not as tricky. The map stays on the left side of the window and the media is

presented on the right. I will review quickly how to get access to a map and how to set

up the event handling, and then go on to the HTML5, CSS, and JavaScript features for

satisfying the rest of the critical requirements.

�Google Maps API for Map Access and Event Handling
Access to the Google Maps API requires a script element with reference to an external

file. As was mentioned in Chapter 4, the first step to using the Google Maps API is to go

to this site to obtain a key: https://developers.google.com/maps/documentation/

javascript/get-api-key.

The code to get access to the API is to modify and then add the following to your

HTML document:

<script async defer src="https://maps.googleapis.com/maps/api/js?key=YOUR_

API_KEY&callback=initMap"

 type="text/javascript"></script>

This external script element brings in the definitions of objects, such as map and

marker, that you can now use to include functionality from Google Maps into your HTML

and JavaScript project.

I set up the connection to mapping using a function I named makemap. It has two

parameters: two decimal numbers that represent the latitude and longitude values:

function makemap(mylat, mylong)

The global variables zoomlevel, holding a number from 0 to 18, and bxmarker and

rxmarker, holding the address of image files, are set before the function makemap is

invoked.

The code to bring in a map is an invocation of the google.maps.Map constructor

method. It takes two parameters. The first is the location in the HTML document where

the map is to appear. I set up a div with ID place in the body of the document:

<div id="place" style="float: left; width:50%; height:400px"></div>

Chapter 5 Map Portal: Using Google Maps to Access Your Media

https://developers.google.com/maps/documentation/javascript/get-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key

177

The second parameter is an associative array. The following three statements set up

the location at which the map is centered as a Google Maps latitude-longitude object,

create the associative array myOptions, and invoke the Map constructor:

blatlng = new google.maps.LatLng(mylat,mylong);

myOptions = {

 zoom: zoomlevel,

 center: blatlng,

 mapTypeId: google.maps.MapTypeId.ROADMAP

 };

map = new google.maps.Map(document.getElementById("place"), myOptions);

For completeness sake, here are screenshots with other settings for the map type.

These are TERRAIN, HYBRID, and SATELLITE. The mapTypeId can be set with simple

strings, for example, 'roadmap'. Figure 5-13 shows the results of requesting the setting

showing the terrain—that is, colors indicating elevations, water, park, and human-

constructed areas:

mapTypeId: google.maps.MapTypeId.TERRAIN

Figure 5-14 shows the results of requesting the HYBRID view, combining satellite

and road map imagery.

mapTypeId: google.maps.MapTypeId.HYBRID

Figure 5-13.  The TERRAIN map type

Chapter 5 Map Portal: Using Google Maps to Access Your Media

178

By the way, the hybrid map is produced by clicking the Satellite option on the

interface.

Figure 5-15 shows the results of requesting SATELLITE images. We can think of this

as the pure satellite image. Notice that major highways are visible.

mapTypeId: google.maps.MapTypeId.SATELLITE

Lastly, you may have an application in which you do not want the viewer to change

the map directly. You can prevent the user from changing the map by disabling the

default interface with the use of an additional option in the myOptions array. I have

included the statement I put before disableDefaultUI to communicate that the

associative array properties are separated by commas, with no comma after the last one.

mapTypeId: google.maps.MapTypeId.ROADMAP,

disableDefaultUI: true

Figure 5-14.  The HYBRID map type

Figure 5-15.  The SATELLITE map type

Chapter 5 Map Portal: Using Google Maps to Access Your Media

179

Figure 5-16 shows the results. The user can still pan over the map, that is, move it, but

the + and – zooming controls, and the Map and Satellite buttons have been removed.

There are two more operations for makemap to carry out. A custom marker is placed on

the map at the indicated center location and event handling is set up for clicking the map:

marker = new google.maps.Marker({

 position: blatlng,

 title: "center",

 icon: rxmarker,

 map: map });

listener = google.maps.event.addListener(map, 'click', function(event) {

 checkit(event.latLng);

 });

The rxmarker value references an image object that has its src set to an external

file named rx1.png. This is what produces the small red x at the center of the map.

As a reminder: addListener is a method setting up an event for Google Maps API. The

addEventListener is a method setting up an event for JavaScript.

�Project Content in External File
The quiz use three types of media: video, picture, and what I term pictureaudio.

Note: these are my terms for the three types I have chosen to include in the project. The

content of the quiz is specified using two arrays I named precontent and questions.

Each element of the precontent array is itself an array of five or six elements. The first

Figure 5-16.  Map interface removed

Chapter 5 Map Portal: Using Google Maps to Access Your Media

180

four elements are the same for all the types: the latitude, longitude, title, and type. The

fifth or the fifth and the sixth point to the specific media elements. The data for the

current quiz, that is, the contents of the external file, is:

var base=

 [41.04796,-73.70539,"Purchase College/SUNY"];

var zoomlevel = 13;

var precontent = [

 �[41.19991,-73.72353,"Esther at home","pictureaudio","estherT","esther.

jpg"],

 [41.05079,-73.70448,"Lego robot","video","maze"],

 [40.68992,-74.04460,"Fire works","video","sfire3"],

 [34.298846,132.318359,"Miyajima","picture","miyajima0.JPG"]

];

var questions = [

 "Where did Grandma Esther live?",

 "Show the Lego robot navigating a maze.",

 "Where are great fireworks?",

 "Where is the Great Torii?"

];

var maxdistance = 10;

The base, zoomlevel, and maxdistance variables are all what they seem. The base

is the initial center point for the map. The zoomlevel specifies the initial zoom. I say

initial because the user can use the Google Maps controls to pan or zoom in or out. The

maxdistance is the number I use to check if the user clicks close enough to one of the

locations. You will need to determine the appropriate distance for your application.

The precontent array specifies four locations, starting with a picture/audio

combination, followed by two videos, followed by one picture. The element in the

array for the picture/audio combination includes, as you would expect, two additional

pieces of information. It is not obvious from just this section of code, but esther.jpg

refers to an image element and estherT refers to an audio element. Similarly, maze and

sfire3 refer to video elements, and miyajima0.JPG refers to another image element. An

arrangement using two or more arrays like I use precontent and questions is termed

Chapter 5 Map Portal: Using Google Maps to Access Your Media

181

parallel structures. My code produces an array called content, which is referenced by the

checkit function (to be described next), and the appropriate media are presented.

The external scripts are brought into the main document using a script element.

For the mapmediaquiz, this is

<script type="text/javascript" src="mediaquizcontent.js"> </script>

�Distances and Tolerances
The calculation of distance between two latitude-longitude points was described in the

previous chapter. The issue to be explained here concerns how to make comparisons

of distances. For the quiz application, I need to write code to determine if the position

returned by the Google event handler is close enough to the correct location given for

the specified question. The variable maxdistance holds the value, sometimes called

the tolerance. Here is most of the code for my checkit function. I have left out the

switch statement that does something different for each of the question types once it is

determined that the player’s guess is close enough.

function checkit(clatlng) {

 var marker;

 �var latlnga =new google.maps.LatLng(content[nextquestion]

[0],content[nextquestion][1]);

 var distance = dist(clatlng,latlnga);

 eraseold();

 marker = new google.maps.Marker({

 position: clatlng,

 title: "Your answer",

 icon: bxmarker,

 map: map });

 if (distance<maxdistance) {

 switch (content[nextquestion][3]) { ...

 } // end switch

 asknewquestion();

 } // end if (distance<maxdistance)

 else {

Chapter 5 Map Portal: Using Google Maps to Access Your Media

182

 answer.innerHTML= "Not close enough to the location.";

 }

}

�Regular Expressions Used to Create the HTML
Regular expressions are a powerful facility for describing patterns of character strings

(text) for checking and for manipulation. It is a whole language for specifying patterns.

For example, to give you a flavor of this large topic, the pattern

/^5[1-5]\d{2}-?\d{4}-?\d{4}-?\d{4}$/

can be used detect MasterCard numbers. These numbers start with 51 to 55, followed

by two more digits, and then three groups of four digits. This pattern accepts the dashes,

but does not require them. The ^ symbol means the pattern must be present at the start

of the string, and the $ means it must go to the end of the string. The forward slashes (/)

are delimiters for the pattern and the backslashes are escape characters. Interpreting this

pattern starting at the start goes as follows:

•	 ^: Start at the start of the string.

•	 5: Pattern must contain a 5.

•	 [1-5]: Pattern must contain one of the numbers 1, 2, 3, 4, or 5.

•	 \d{2}: Pattern must contain exactly two digits.

•	 -?: Pattern must contain 0 or 1 -.

•	 \d{4}: Pattern must contain exactly four digits.

•	 -?: Pattern must contain 0 or 1 -.

•	 \d{4}: Pattern must contain exactly four digits.

•	 -?: Pattern must contain 0 or 1 -.

•	 \d{4}: Pattern must contain exactly four digits.

•	 $: End of string.

MasterCard numbers must obey other rules as well, and you can do the research to

find out how to verify them further. Don’t worry, we’ll be using a much simpler regular

expression than that (also known as a regex).

Chapter 5 Map Portal: Using Google Maps to Access Your Media

183

The use of regular expressions predates HTML. Regular expressions can be used in

forms to specify the format of the input. For this application, we will use the replace

method for strings to find all instances of a specific small piece of text within a long

string and replace it with something else. One of the statements I use is

videomarkup = videomarkup.replace(/XXXX/g,name);

What this does is find all occurrences (this is what the g does) of the string XXXX and

replace each of them with the value of the variable name.

I could and probably should have made even more use of regular expressions to

verify the data defining the content of the applications. Maybe that’s something you want

to experiment with in your own applications.

Note  At some point, the right decision may be to stop using straight JavaScript
arrays, including the use of parallel structures, and use XML or a database. I didn’t
think it was called for in this application, but I could be wrong. Note that the use of
server-side programming using a language such as PHP with or without databases
does provide a way to hide the data.

�Dynamic Creation of HTML5 Markup and Positioning
The external script statements bring in the information for the quiz application. Now is

the time to explain how the information is used. The init function will invoke a function

I named loadcontent. This function calls makemap to make a map at the indicated base

location.

makemap(base[0],base[1]);

The content array starts off as an empty array.

var content = [];

By the way, this is different from

var content;

Your code needs to make content an array.

It then uses a for loop to iterate over all the elements of precontent. The start of the

for loop adds the ith element of precontent to the content array.

Chapter 5 Map Portal: Using Google Maps to Access Your Media

184

for (var i=0;i<precontent.length;i++) {

 content.push(precontent[i]);

 name = precontent[i][4];

The next line is the header of a switch statement using as the condition the element

of the inner arrays that indicates the type.

switch (precontent[i][3]) {

For video and pictureaudio, the code creates a div element and positions it so that

it floats to the right. It then places inside the div element the right markup for video or

audio. What is that markup? I have what I will describe as dummy strings that have XXXX

where the actual names of the video or audio files would go. Think of these as templates.

I could have used just one string for video, but it was sufficiently complicated that I

decided to use three and two for the audio. These strings are

var videotext1 = "<video id=\"XXXX\" loop=\"loop\" preload=\"auto\"

controls=\"controls\" width=\"400\"><source src=\"XXXX.webmpv8.webm\"

type=\'video/webm\'>";

var videotext2="<source src=\"XXXX.theora.ogv\" type=\'video/

ogg\'> <source src=\"XXXX.mp4\" type=\'video/mp4\'>";

var videotext3="Your browser does not accept the video tag.</video>";

var audiotext1="<audio id=\"XXXX\" controls=\"controls\"

preload=\"preload\"><source

 src=\"XXXX.ogg\" type=\"audio/ogg\" />";

var audiotext2="<source src=\"XXXX.mp3\" type=\"audio/mpeg\" /><source

src=\"XXXX.wav\"

 type=\"audio/wav\" /></audio>";

Notice the use of the backslash (\). It tells JavaScript to use the next symbol as is, and

not interpret it as a special operator for regular expressions. This is how the quotation

marks inside the screen get carried over to be part of the HTML.

My approach required that I make sure that the names of the video and audio files

follow this pattern. This meant that the MP4 files all needed to contain just the name and

no internal dots.

Chapter 5 Map Portal: Using Google Maps to Access Your Media

185

I write code using the regular expression function replace to take information out of

the precontent array and put it in the strings in as many places as necessary. The switch

statement in its entirety is

switch (precontent[i][3]) {

 case "video":

 divelement= document.createElement("div");

 divelement.style = "float: right;width:30%;";

 videomarkup = videotext1+videotext2+videotext3;

 videomarkup = videomarkup.replace(/XXXX/g,name);

 divelement.innerHTML = videomarkup;

 document.body.appendChild(divelement);

 videoreference = document.getElementById(name);

 content[i][4] = videoreference;

 break;

 case "pictureaudio":

 divelement = document.createElement("div");

 divelement.style = "float: right;width:30%;";

 audiomarkup = audiotext1+audiotext2;

 audiomarkup = audiomarkup.replace(/XXXX/g,name);

 divelement.innerHTML = audiomarkup;

 document.body.appendChild(divelement);

 audioreference = document.getElementById(name);

 savedimagefilename = content[i][5];

 content[i][5] = audioreference;

 imageobj = new Image();

 imageobj.src= savedimagefilename;

 content[i][4] = imageobj;

 break;

 case "picture":

 imageobj = new Image();

 imageobj.src= precontent[i][4];

 content[i][4] = imageobj;

 break;

 }

Chapter 5 Map Portal: Using Google Maps to Access Your Media

186

Notice that the pictureaudio case does some juggling to create the content element

with references to the newly created audio element and the image element.

However, this was not quite enough to ensure that the video and audio end up

on the right side for all browsers. That is, it worked for some but not others. I decided

to position the audio and video exactly—that is, in absolute terms. This required the

following CSS in the style element for all video and audio elements:

video {display:none; position:absolute; top: 60px; right: 20px;}

audio {display:none; position:absolute; top: 60px; right: 20px;}

The position of the audio is for the audio controls.

There is a potential problem with creating these HTML elements dynamically. You

may recall that in Chapter 2 on the family collage, there was code to make sure the

videos were loaded before doing anything with them. I have not observed any problems

with the quiz probably because responding to the questions takes sufficient time. Still, I

urge you to keep the issue in mind and refer back to Chapter 2.

�Hint Button
You can tell from my coding that I was ambivalent about whether to provide a hint or

help a player who had given up. In the body element, I included

<button onClick="giveup();">Hint? </button>

The giveup function creates a new map. That is, it uses the makemap function to

construct access to a different Google Map in the same place. It also erases the old media

and puts directions into the answer element.

function giveup() {

 makemap(content[nextquestion][0],content[nextquestion][1]);

 eraseold();

 answer.innerHTML="Click at red x to finish this question.";

}

Chapter 5 Map Portal: Using Google Maps to Access Your Media

187

�Building the Application and Making It Your Own
The first and critical step in making the application your own is to decide on the content.

There are advantages to using a variety of media content and a variety of picture

dimensions (and video dimensions), but there is something to be said for having a

simpler design.

�The Quiz Application
A quick summary of the quiz application follows:

	 1.	 init: Performs initialization, including the call to loadcontent.

	 2.	 loadcontent: Uses the variables, most significantly the

precontent array included in the external script element, to create

new markup for the media. It also invokes makemap. The questions

array does not need any more work.

	 3.	 makemap: Brings in the map and sets up event handling, including

the call to checkit.

	 4.	 asknewquestion: Displays the questions.

	 5.	 checkit: Compares the clicked location with the location for this

question.

	 6.	 dist: Computes the distance between two locations.

	 7.	 giveup: This is the response to clicking on the Hint button. A new

map is brought in. Any media is erased and the player is directed

to click near the displayed red x.

	 8.	 eraseold: Removes any currently showing video, audio, or

picture.

Table 5-2 outlines the functions in the quiz application. The function table

describing the invoked/called by and calling relationships for the mapmediabase.html

application is similar for all applications.

Chapter 5 Map Portal: Using Google Maps to Access Your Media

188

Table 5-3 shows the code for the quiz application.

Table 5-2.  Functions in the Quiz Application

Function Invoked/Called By Calls

init Invoked by action of the onLoad attribute in the

<body> tag

loadcontent,

asknewquestion

makemap Invoked by loadcontent and giveup

checkit Invoked by addListener call in makemap dist, asknewquestion,

eraseold

dist Invoked by checkit

loadcontent Invoked by init makemap

asknewquestion Invoked by init and checkit

eraseold Invoked by checkit and giveup

giveup Invoked by action of button eraseold, makemap

Chapter 5 Map Portal: Using Google Maps to Access Your Media

189

Table 5-3.  Complete Code for the Map Quiz Program

Code Line Description

<!DOCTYPE html> Doctype for HTML5

<html> html tag

<head> head tag

<title>Map Quiz </title> Complete title element

<meta charset="UTF-8"> Meta tag, standard for HTML5

<style> style tag

header {font-family:Georgia,"Times New

Roman",serif;

Set styling for the header, a semantic

element; the font family makes Georgia

the first choice, with Times New Roman

a fallback, and the default serif the next

fallback choice of fonts

 font-size:20px; Fairly big font

 display:block; Set line breaks before and afterward

} Close style directive

video {display:none; position:absolute;

top: 60px;

 right: 20px;

Style directive for video; no display

initially

} Close the video directive

audio {display:none; position:absolute;

top: 60px;

 right: 20px;}

Style directive for audio; note that this

is for the controls; no display initially

canvas {position:relative; top:60px} Style directive for the canvas element

#answer {position:relative; font-

family:Georgia,

 "Times New Roman", Times, serif; font-

size:16px;}

Style directive for the message at the

upper right

</style> Closing style tag

(continued)

Chapter 5 Map Portal: Using Google Maps to Access Your Media

190

Table 5-3.  (continued)

Code Line Description

<script async defer src="https://maps.

googleapis.com/maps/api/js?key=YOUR_API_

KEY&callback=initMap"

 type="text/javascript"></script>

Script element bringing in Google Maps

API; Note: you need to obtain and use

your own API key

<script type="text/javascript"

src="mediaquizcontent.js">

 </script>

Bring in the content in

mediaquizcontent.js

<script type="text/javascript"

charset="UTF-8">

Opening script tag

var listener; Used to set up the Google Maps event

of clicking on a map

var map; Used to hold a map

var myOptions; The options array holding map

specifications

var ctx; Context for the canvas

var blatlng; Base latlng object

var content = []; An empty array, to be populated by

loadcontent

var answer; Reference to answers, instructions

var v; Will hold references to video elements

var audioel; Will hold references to audio elements

(this quiz has just one)

var videotext1 = "<video id=\"XXXX\"

preload=\"auto\" controls=\"controls\"

width=\"400\"><source src=\"XXXX.mp4\"

type=\'video/mp4; codecs=\"avc1.42E01E,

mp4a.40.2\"\'>";

Part 1 of template for video

(continued)

Chapter 5 Map Portal: Using Google Maps to Access Your Media

191

Table 5-3.  (continued)

Code Line Description

var videotext2="<source src=\"XXXX.theora.

ogv\" type=\'video/ogg; codecs=\"theora,

vorbis\"\'><source src=\"XXXX.webmvp8.

webm\" type=\'video/webm; codec=\"vp8,

vorbis\"\'>";

Part 2 of template for video

var videotext3="Your browser does not

accept the video tag.</video>";

Part 3 of template for video

var audiotext1="<audio

id=\"XXXX\" controls=\"controls\"

preload=\"preload\"><source src=\"XXXX.

ogg\" type=\"audio/ogg\" />";

Part 1 of template for audio

var audiotext2="<source src=\"XXXX.mp3\"

type=\"audio/mpeg\" /><source src=\"XXXX.

wav\" type=\"audio/wav\" /></audio>";

Part 2 of template for audio

var nextquestion = -1; The question counter needs to start

before the 0th one

function init() { Header for init function

 �ctx = document.getElementById("canvas").

getContext('2d');

Set reference to canvas

 �answer = document.

getElementById("answer");

Set reference to answer

 �header = document.

getElementById("header");

Set reference to header (where

question is displayed)

 loadcontent(); Create the content using the

precontent array

 asknewquestion(); Invoke function to ask question, thus

starting off the quiz

} Close init function

(continued)

Chapter 5 Map Portal: Using Google Maps to Access Your Media

192

Table 5-3.  (continued)

Code Line Description

function asknewquestion() { Header for asknewquestion function

 nextquestion++; Increment the counter

if (nextquestion<questions.length) { If still more questions

 header.innerHTML=questions[nextquestion

];

Show question

 } Close the if-still-more-

questions clause

 else { Else

 header.innerHTML="No more questions."; Display no more questions

 } Close else clause

} Close asknewquestion function

function loadcontent() { Header for loadcontent function

 var divelement; Will hold references to newly created

div elements

 makemap(base[0],base[1]); Invoke makemap for the base location

 var videomarkup; The complete template for a video

element

 var videoreference; Reference to each newly created video

element

 var audiomarkup; The complete template for an audio

element

 var audioreference; Reference to each newly created audio

element

 var imageobj; Image object

 var name; The name obtained from precontent

to be used to replace the XXXX in the

templates

(continued)

Chapter 5 Map Portal: Using Google Maps to Access Your Media

193

Table 5-3.  (continued)

Code Line Description

 var savedimagefilename; Saved image file

 for (var i=0;i<precontent.length;i++) { For loop header, going through

precontent

 content.push(precontent[i]); Add to content

 name = precontent[i][4]; Extract the name

 switch (precontent[i][3]) { Do switch based on the type

 case "video": Video case

divelement= document.createElement("div"); Create a div

divelement.style = "float:

right;width:30%;";

Position media to the right

videomarkup = videotext1+videotext2+videot

ext3;

Create the complete template

videomarkup = videomarkup.replace(/XXXX/

g,name);

Do the replace using name

 divelement.innerHTML = videomarkup; Put result into the div

 document.body.appendChild(divelement); Add the div to the body (so it’s

accessible) but note that it will not be

visible until it’s made visible

videoreference = document.

getElementById(name);

Object a reference

content[i][4] = videoreference; … and make THAT the fourth element

of the subarray

break; Leave the switch (video case over)

case "pictureaudio": Pictureaudio case

divelement = document.createElement("div"); Create a div

divelement.style = "float:

right;width:30%;";

Position media to the right

(continued)

Chapter 5 Map Portal: Using Google Maps to Access Your Media

194

Table 5-3.  (continued)

Code Line Description

audiomarkup = audiotext1+audiotext2; Create the complete template

audiomarkup = audiomarkup.replace(/XXXX/

g,name);

Do the replace using name

divelement.innerHTML = audiomarkup; Put the result in the div

document.body.appendChild(divelement); Add the div to the body (so it’s

accessible) but note that it will not be

visible until it’s made visible

audioreference = document.

getElementById(name);

Object a reference

savedimagefilename = content[i][5]; Put the current fifth element into

savedimagefilename

content[i][5] = audioreference; Make the audioreference the fifth

element of the subarray

imageobj = new Image(); Create an image object

imageobj.src= savedimagefilename; Make its source the

savedimagefilename

content[i][4] = imageobj; Make this the fourth element of the

subarray

break; Leave the switch (pictureaudio

done)

case "picture": Picture case

imageobj = new Image(); Create an image object

imageobj.src= precontent[i][4]; Set its src

content[i][4] = imageobj; Set the fourth element of the subarray

to point to the image

break; Leave the switch (picture case done)

} Close switch

(continued)

Chapter 5 Map Portal: Using Google Maps to Access Your Media

195

Table 5-3.  (continued)

Code Line Description

} Close for loop

} Close loadcontent function

var rxmarker = "rx1.png"; Little red x

var bxmarker = “bx1.png”; Little black x

function makemap(mylat,mylong) { Header for makemap function

 var marker; Will hold marker object

 blatlng = new google.maps.

LatLng(mylat,mylong);

Create latlng object using function

parameters

myOptions = { zoom: zoomlevel,

center: blatlng, mapTypeId: google.maps.

MapTypeId.ROADMAP };

Set the myOptions array

map = new google.maps.Map(document.

getElementById("place"), myOptions);

Bring in the map

marker = new google.maps.Marker({

position: blatlng, title: "center", icon:

rxmarker, map: map });

Create a marker

 �listener = google.maps.event.addListener

(map, 'click', function(event) {

Set up the event for clicking on the map

 checkit(event.latLng); … the event handler is an anonymous

function that calls checkit

 }); Lose the function and close the call to

addListener

} Close makemap

function eraseold() { Header for eraseold function (same

code as in previous example, but now

in a function)

 if (v != undefined) { Is there an old v defined?

 v.pause(); Pause it

(continued)

Chapter 5 Map Portal: Using Google Maps to Access Your Media

196

Table 5-3.  (continued)

Code Line Description

 v.style.display = "none"; Remove from display

 } Close clause

 if (audioel != undefined) { Is there an old audioel defined?

 audioel.pause(); Pause it

 audioel.style.display = "none"; Erase controls for last audio played

 } Close clause

 ctx.clearRect(0,0,300,300); Clear canvas

} Close eraseold function

function checkit(clatlng) { Header for checkit

 var marker; Will hold the marker (black x) at the

spot set by the player

 �var latlnga =new google.maps.

LatLng(content[nextquestion]

[0],content[nextquestion][1]);

Build the latitude-longitude object for

the answer to this question

 var distance = dist(clatlng,latlnga); Compute distance

 eraseold(); Invoke the function to erase any media

now on display

var marker = new google.maps.Marker({

 position: clatlng,

 title: "Your answer",

 icon: bxmarker,

 map: map });

Place the marker

if (distance<maxdistance) { Was the user’s click close enough?

 switch (content[nextquestion][3]) { Switch on the type associated with this

question

 case "video": Video case

(continued)

Chapter 5 Map Portal: Using Google Maps to Access Your Media

197

Table 5-3.  (continued)

Code Line Description

answer.innerHTML=content[nextquestion][2]; Display the answer (title)

 ctx.clearRect(0,0,400,400); Clear the canvas

 v = content[nextquestion][4]; Get reference to the video

 v.style.display="block"; Make it visible

 v.currentTime = 0; Set at the start

 v.play(); Play the video

 break; Leave switch (video case done)

 case "picture": Picture case (will use some of coding

for picture audio case)

 case "pictureaudio": Pictureaudio case

answer.innerHTML=content[nextquestion][2]; Display answer

 ctx.clearRect(0,0,400,400); Clear the canvas

 var img1 = content[nextquestion][4]; Get the image

 var iw = img1.width; Determine width

var ih = img1.height; Determine height

var aspect = iw/ih; Calculate aspect

if (iw>=ih) { If wider than tall, then width will be the

factor to fit

if (iw>400){

 tw = 400;

 th = 400/aspect;

 }

If width is bigger than canvas, calculate

the target dimensions

else {

 tw = iw;

 th = ih;

 }

If width is not bigger than 400, target is

the original

} Ends if width is bigger

(continued)

Chapter 5 Map Portal: Using Google Maps to Access Your Media

198

Table 5-3.  (continued)

Code Line Description

else { Else (height is critical dimension)

if (ih>400){

 th = 400;

 tw = 400*aspect;

 }

If height is bigger than 400, calculate

the target dimensions

else {

 th = ih;

 tw = iw;

 }

Else target dimensions are the original

} End outer else

ctx.drawImage(img1,0,0,iw,ih,0,0,tw,th); Draw image from the whole source to

the calculated target

if (content[nextquestion][3]=="picture") { If this is picture…

 break;} Leave switch

 else { Else need to display and play the audio

 audioel = content[nextquestion][5]; Extract the element

 audioel.style.display="block"; Display the controls

 audioel.currentTime = 0; Set at the start

 audioel.play(); Play

break; Leave the switch

} Close else not picture

 } Close switch

 asknewquestion(); Ask a new question (only if the user’s

guess was close enough)

 } Close within maxdistance

 else { Else

(continued)

Chapter 5 Map Portal: Using Google Maps to Access Your Media

199

Table 5-3.  (continued)

Code Line Description

 �answer.innerHTML= "Not close enough

to the answer.";

Display message

 } Close else

} Close checkit

 function dist(point1, point2) { Header for dist function

 var R = 6371; // km Value used for km

 // var R = 3959; // miles Keep comment in code to easily switch

to miles

 var lat1 = point1.lat()*Math.PI/180; Calculate radian

 var lat2 = point2.lat()*Math.PI/180 ; Calculate radians

 var lon1 = point1.lng()*Math.PI/180; Calculate radians

 var lon2 = point2.lng()*Math.PI/180; Calculate radians

var d = Math.acos(Math.sin(lat1)*Math.

sin(lat2) +

Math.cos(lat1)*Math.cos(lat2) *

Math.cos(lon2-lon1)) * R;

Standard calculation using law of

cosines

 return d; Return distance

 } Close function

function giveup() { Header for the giveup function

(for the hint)

 �makemap(content[nextquestion]

[0],content[nextquestion][1]);

Bring in new map centered at the

answer

 eraseold(); Erase any old media

 �answer.innerHTML="Click at red x to

finish this question.";

Display instructions since players

need to click to proceed; this gives the

players a way to indicate they have the

new map

(continued)

Chapter 5 Map Portal: Using Google Maps to Access Your Media

200

Table 5-3.  (continued)

Code Line Description

} Close giveup

</script> Close script element

</head> Close head element

<body onLoad="init();"> Body tag; invoke init on loading

<header id="header">Click</header> Header element

<div id="place" style="float:

left;width:50%; height:400px"></div>

The place for the map

<button onClick="giveup();">Hint? </button> Button indicated need for help

<div style="float: right;width:30%;height:4

00px">

Hold rest of elements

<div id="answer">Starting location</div> Holds answer, that is title of location

<p> </p> Spacing

<canvas id="canvas" width="400"

height="400" >

Canvas

Your browser doesn't recognize canvas Standard for old browsers

</canvas> Close canvas element

</div> Close div

</body> Close body

</html> Close html

Chapter 5 Map Portal: Using Google Maps to Access Your Media

201

�Testing and Uploading the Application
This chapter had one application, a geography quiz. It is made up of two files, one

(mapmediaquiz.html) with HTML, CSS, and the bulk of the coding, and the other

(mediaquizcontent.js) with JavaScript representing the content. The coding in the

.js file references the media. I include the standard set of video files for each of the two

video clips, the standard audio files for the single audio clip, and two image files.

I used the image of a small hand-drawn red x and a small hand-drawn black x to mark

locations on the map, instead of the default teardrop shape for markers in Google Maps.

I repeat: you will not be able to run the source code without acquiring your own API key

and changing the script element. You can and should substitute your own questions,

answers (the locations), and media, but do be aware of issues of size and shape and

review my handling to accommodate any big image files.

�Summary
In this chapter, you continued using the Google Maps API. You learned how to do the

following:

•	 Manage a geography quiz.

•	 Use specifications of question, location, and media for dynamic

creation of HTML elements.

•	 Program Google Maps API event handling to detect if the user was

close to locations for which you had video, audio with an image, or

image alone.

•	 Separate the definition of media content from the program itself.

•	 Use a regular expression to produce the right markup.

•	 Start and stop the display and playing of media.

In the next chapter, you will read about the implementation of a game called Add to 15.

It is mainly an exercise in using arrays and strings.

Chapter 5 Map Portal: Using Google Maps to Access Your Media

203
© Jeanine Meyer 2018
J. Meyer, HTML5 and JavaScript Projects, https://doi.org/10.1007/978-1-4842-3864-6_6

CHAPTER 6

Add to 15 Game
In this chapter, you will learn the following:

•	 Implementing a known real-world game as a digital program with

“the computer” as one of the players

•	 Developing a strategy for “the computer”

•	 Inserting a pause

•	 Working with arrays and strings

�Introduction
The two-player game Add to 15 requires players to take turns choosing from the numbers

1 to 9 with the goal of obtaining a set of three numbers that add up to 15. I first saw this

game at the Museum of Mathematics in New York City where it was implemented as an

apparatus with the numbers on rods that could be moved from the center to the player’s

side. If a player won, there were lights and loud, happy sounds. If no one won, there were

shorter and quieter sounds. The game also can be played using a set of 1 to 9 cards from

a deck of cards or with paper-and-pencil. The game can be described as one of perfect

knowledge: the results of past moves and current possibilities are all visible. The game is

equivalent to a well-known children’s game and I leave identifying the game and proving

the equivalence to the reader. (You can find an explanation on this with the source code

for this chapter.)

For the example for this chapter, I chose to have the program manage the game

and take the role of one of the players. This meant that I needed to formulate a strategy

for “the computer”. My strategy is pretty good, but it still is possible for the player to

win. Sometime later in my work, I decided that I needed to insert a pause before “the

computer” moves in order for the human player to experience the program as a game

with an opponent.

204

Figure 6-1 shows the game’s opening window.

Figure 6-1.  Opening window

Figure 6-2 shows the results after the player and “the computer” each make a move.

Figure 6-2.  After moves by player and computer

Lastly, I show a screenshot, Figure 6-3, from what appears to be the most common

result: the numbers are exhausted and no one wins. In my family, this was described as

“The Cat Wins” so that is the term I used for the message telling the results.

Chapter 6 Add to 15 Game

205

This chapter is a case study in implementing games, including implementing a user

interface and a strategy. The use of arrays with references between arrays is critical.

�General Requirements for a Game
The requirement for the Add to 15 program and others like it is to present a reasonably

intuitive interface to players. The opposing player, which I name “the computer” even

though I do not like anthropomorphizing a machine, needs to have a strategy. The

program I describe in this chapter has a fairly tough strategy. I think I have beaten it, but

not too often. Possible enhancements for this program are to develop the best possible

strategy in which “the computer” never loses, although perhaps does tie, as well as

other, less skilled strategies. With a set of options, an enhancement would be to present

the human players a choice to pick the skill level for their opponent. This requires

formulating a sequence of strategies, including, perhaps, making random moves.

My first version of this program had “the computer” move showing up close to

instantaneously with the display of the player’s move. I inserted a pause to give the game

what I consider a nicer “touch and feel”. This practice would hold for many games. When

we are playing a game in the real world, we do not consciously pause, but implementing

the game in the digital world may require explicit attention to time.

Figure 6-3.  Game ends in a tie

Chapter 6 Add to 15 Game

206

The Add to 15 is simple enough so that all possible combinations adding up to 15 can

be listed. In fact, there are 8 and so my program has an array whose elements are strings

holding the numbers of a valid group, for example “3 5 7”. (Actually, the array has nine

elements, with the first an empty placeholder so indexing can be 1-based, not 0-based.)

The management of the game and the implementing of “the computer” strategy can be

built using the information in this array. You will not see any code that adds up numbers!

My program has another array that has nine elements, each an array with elements

pointing to which groups in the list of eight that the number belongs to. My program has

an array for the board, which starts out with all nine numbers; an array for the player,

initially empty; and an array for “the computer”, also initially empty. There are arrays

for player and computer that have nine elements, with the first element not used, that

indicate how many elements of each of the eight combinations are present.

The program has two arrays that do not change: groups and occupied. It also has one

array, numbers, that is created at the start but does not change after that. There are five

arrays that do change: board, computer, player, pgroupcount, and cgroupcount. You will

see these in use in the next section. The use of arrays and the pointing back and forth is

typical of these types of applications. There is redundancy, but it eases the coding.

�HTML5, CSS, and JavaScript
In this section, I explain the features used to accomplish the requirements for the Add to

15 project.

�Styling in CSS
The oval-shaped, red border, yellow background elements that hold the nine numbers

are created dynamically as span elements. The CSS that sets the appearance is

span {

 position:absolute;

 top:180px;

 border-style: solid;

 color: red;

 border-radius: 25px;

 background-color: yellow;

Chapter 6 Add to 15 Game

207

 padding: 5px;

 cursor: pointer;

}

Creating these elements dynamically with absolute positioning means that they are

easily moved from the board to the player’s or “the computer’s” section. Making the type

span as opposed to div means that there is no forced line break and they can be next to

each other. By the way, my trick for distinguishing between padding (inside the element)

and margin (outside the element) is to think of a padded cell.

�JavaScript Arrays
As already discussed, a set of arrays is used for the operation of the game. Some of the

arrays have an unused slot at the 0-index position, just to make things easier for the

coding. The groups array holds the possible combinations adding up to 15:

var groups = [

 " ", //placeholder, not used

 "3 4 8",

 "1 5 9",

 "2 6 7",

 "1 6 8",

 "3 5 7",

 "2 4 9",

 "2 5 8",

 "4 5 6"

];

The occupied array, which you can view as redundant information, makes certain

calculations easier. I did decide to put up with the zero-based indexing. The occupied

array is used to indicate which groups each value from 0 to 9 belongs to. To be more

specific, values in the Nth subarray correspond to the indices of the groups holding N+1.

Here is the occupied array and I will indicate some examples afterwards.

var occupied = [//indexed subtracting 1

 [2, 4],

 [3, 6, 7],

 [1, 5],

Chapter 6 Add to 15 Game

208

 [1, 6, 8],

 [2, 5, 7, 8],

 [3, 4, 8],

 [3, 5],

 [1, 4, 7],

 [2, 6]

];

So the number 1 is associated with the array [2, 4]. This indicates that 1 belongs to

the second group, “1 5 9”, and the fourth group, “1 6 8”. The number 5 belongs to the

second, fifth, seventh, and eighth groups. The groups and the occupied arrays do not

change.

The board, player and computer array hold the numbers that are on the board,

selected by the player, or selected for “the computer”. So the initial declarations are

var player = [];

var computer = [];

var board = [1,2,3,4,5,6,7,8,9];

The last two arrays keep track of how close the player and “the computer” are to

completing each of the eight combinations. So the initial declarations are

var pgroupcount = [0,0,0,0,0,0,0,0,0]; //unused first slot

var cgroupcount = [0,0,0,0,0,0,0,0,0]; //unused first slot

At the point in the game shown in Figure 6-2, “the computer” holds a 2. Looking

at the occupied array, 2 is present in groups 3, 6, and 7. The cgroupcount would

be [0,0,0,1,0,0,1,1,0]. The player chose 5 first, so the pgrounpcount array was

[0,0,1,0,0,1,0,1,1].

If the player then chooses 6, the pgroupcount will be [0,0,1,1,1,1,0,1,2]. The

presence of a 2 in either group’s count array indicated the chance to win–if the player

has 2 members of a group, getting the third means a win–or the need to block–if

“the computer” has 2 members of a group, it can win on the next move. My code must

determine the identity of the missing number and check if it is still on the board (in the

board array).

With what can be described as the infrastructure of these arrays, I can explain

responding to a player move, generating “the computer” move, and determining if the

game is won or over.

Chapter 6 Add to 15 Game

209

�Setting Up the Game
The setUpBoard function creates the nine span elements that represent the nine

numbers. References to these nine elements are held in an array called numbers. An

extra attribute is set for the elements, named n, to save the specific number. As part of

the creation process, implemented using a for loop, the addEventListener method is

invoked for the “click” event and is set to invoke the addToPlayer function when the

player clicks on the number.

Once created, this array does not change. What does change is the location of each

element, indicated by the style.left and style.top attributes.

�Responding to a Player Move
The critical function for responding to a player move is addToPlayer. You can think of

the addToPlayer function as performing housekeeping types of operations, updating

the various arrays. The number selected is added to the player array. The function

take is invoked, which removes the element from the board array. The span element

corresponding to the number is relocated by changing the style.top attribute.

Changing the player and board arrays is required but it does not change where the

number element is positioned in the window.

A local variable, holder, is set to hold the groups containing the number. Recall that

the occupied array is the array of arrays with that information. I use a for loop to go

through holder and update pgroupcount. My code checks if any of the counts are three.

This would indicate a win by the player. If that is not true, the addToPlayer function

executes a setTimeout statement to put in a pause before invoking computerMove.

The addToPlayer function has a line in which the event of clicking on a piece is

stopped:

ev.target.removeEventListener("click",addToPlayer);

This prevents the bad behavior of a player clicking on a piece that has already been

taken by the player. I must admit that I did notice this problem originally.

Chapter 6 Add to 15 Game

210

�Generating the Computer Move
The computerMove function is invoked after a pause. I split up the tasks between

computerMove and smartChoice. The computerMove function invokes the smartChoice

function. The computerMove function mainly does the similar housekeeping tasks as

performed in the addToPlayer function. I note that although my program has the player

playing first, the computerMove code does check if the board is empty.

The smartChoice program uses the arrays to go through the following operations:

	 1.	 Is there any number still on the board (in the board array) that

would win the game for the computer?

	 2.	 Assuming that an immediate win is not possible, is there any

number on the board that would mean an immediate win by the

player? If so, play that number to block the player.

	 3.	 Assuming that an immediate block is not required, is there any

group with one element already played by the computer, and

neither of the other two played by the player? If so, take one of the

two available numbers.

	 4.	 Assuming none of the previous cases apply, and 5 is available,

take it.

	 5.	 Assuming none of the previous cases apply, take an even number.

	 6.	 Make a random choice from among the numbers remaining.

So enhancing the program by providing better and/or more strategies would involve

changing smartChoice.

Analogous to the action in addToPlayer, the computermove function has a line to

remove the event handling for clicking on a piece that has already been played:

numbers[n-1].removeEventListener("click",addToPlayer);

Chapter 6 Add to 15 Game

211

This prevents the bad behavior of a player clicking on a piece that has been played by

the computer.

The computerMove function, like the addToPlayer function, can determine if the

game is over either with a win for the computer or a tie.

�Building the Application and Making It Your Own
You can make this application your own by improving the strategy and/or adding

different strategies. You can look ahead to Chapter 9 where the HTML5 facility named

localStorage is described and think about how that can be incorporated into game

play. The main objective of this chapter is to provide experience in using arrays with

cross-references. Another challenge is to provide a way to repeat the game without

reloading. You can look ahead to Chapter 8, at the jigsaw puzzle turning into a video,

for an example of how to do that. Yet another enhancement is to record the sequence of

moves, possibly using localStorage, so you can try different strategies.

Table 6-1 lists all the functions and indicates how they are invoked and what

functions they invoke.

Table 6-1.  Functions in the Add to 15 Project

Function Invoked/Called By Calls

init Invoked by action of the onLoad attribute in the <body> tag setUpBoard

setUpBoard init

computerMove Invoked by action of setTimeout, called in addToPlayer smartChoice,

take

smartChoice computerMove

take addToPlayer, computerMove

addToPlayer Invoked by action of addEventListener for click events take

Chapter 6 Add to 15 Game

212

Table 6-2 shows the code for the Add to 15 game, with comments about each line.

Table 6-2.  Complete Code for the Add to 15 application

Code Line Description

<!DOCTYPE html > Header

<html> Opening html tag

<head> Opening head tag

<title>Add to 15</title> Complete title

<meta charset="UTF-8"> Meta tag

<style> Opening of style element

span {position:absolute; top:180px; Start of span formatting, initial location is on the

board

 �border-style: solid; color: red;

border-radius: 25px; background-

color: yellow;

Solid red border, curved; background is yellow

 padding: 5px; cursor: pointer; Padding between border and text; cursor will be

pointer

} Close span style directive

#status { Styling for status message

 color: red; Red color

 font-size: x-large; Large font

} Close status style directive

</style> Close style element

<script language="JavaScript"> Script tag

var statusref; Will hold pointer to status

var numbers = []; Array of pointers to the created span elements

var game = true; Boolean flag used to control when player can

make a move

var player = []; Will hold all the numbers taken by the player

(continued)

Chapter 6 Add to 15 Game

213

Table 6-2.  (continued)

Code Line Description

var computer = []; Will hold all the numbers taken by the computer

var board = [1,2,3,4,5,6,7,8,9]; Initial setting for the numbers held on the board

var wedge = 50; Horizontal space allowed for each number

var startx = 15; Pieces lined up vertically

var groups = [Static array holding the valid combinations

 " ", Placeholder; not used

 "3 4 8",

 "1 5 9",

 "2 6 7",

 "1 6 8",

 "3 5 7",

 "2 4 9",

 "2 5 8",

 "4 5 6"

]; Close groups

var occupied = [Static array, indexed by subtracting 1 from

number N, indicating which groups the number

belongs to

 [2, 4],

 [3, 6, 7],

 [1, 5],

 [1, 6, 8],

 [2, 5, 7, 8],

 [3, 4, 8],

 [3, 5],

 [1, 4, 7],

(continued)

Chapter 6 Add to 15 Game

214

Table 6-2.  (continued)

Code Line Description

 [2, 6]

]; Close occupied

var pgroupcount =

[0,0,0,0,0,0,0,0,0];

//unused first slot

Initial setting showing progress of filling groups

by the player

var cgroupcount =

[0,0,0,0,0,0,0,0,0];

//unused first slot

Initial setting showing progress of filling groups

by the computer

function init() { Header init function

 setUpBoard(); Invoke setUpBoard

 �statusref=document.

getElementById("status");

Get pointer to status area

} Close init

function smartChoice() { Header smartChoice (for computer turn)

First check for immediate win

 var boardl = board.length; Store current length of board (number of

numbers still on the board)

 for (var i=0;i<boardl;i++) { For loop through those numbers

 var possible = board[i]; Set possible number for a move

 �for (var j=0;j<occupied

[possible-1].length;j++) {

For the groups that possible belongs to…

 �if (cgroupcount[occupied

[possible-1][j]]==2) {

Are there already two numbers in the

computer's side?

 return (i); If so, return this number

 } Close if

 } Close inner for loop

 } Close outer for loop

(continued)

Chapter 6 Add to 15 Game

215

Table 6-2.  (continued)

Code Line Description

Not returned, now check if need to block

 for (var i=0;i<boardl;i++) { Again, loop through numbers on board

 var blocker = board[i]; Set blocker

 �for (var j=0;j<occupied[blocker-1].

length;j++) {

For those groups that blocker belongs to..

 �if (pgroupcount[occupied[blocker-1]

[j]]==2) {

..does the player already have two numbers?

 return(i); If so, return index for this number

 } Close if

 } Close inner for

 } Close outer for

Try for two in a row

See if there is a possible in a group with one

computer played

and 0 player presence

 for (var i=0;i<boardl;i++) { For loop through elements on the board

 var possible = board[i]; Set possible

 �for (var j=0;j<occupied[possible-1].

length;j++) {

For loop for all the groups that possible

belongs to

 �var whatgroup =

occupied[possible-1][j];

Get the group

 �if ((cgroupcount[whatgroup]==1)

&&(pgroupcount[whatgroup]==0)){

If computer has one number already and the

player does not have any

 return (i); Return index for this number

 } Close if

(continued)

Chapter 6 Add to 15 Game

216

Table 6-2.  (continued)

Code Line Description

 } Close inner for

 } Close outer for

If 5 is available, return its position in board

 for (var i = 0;i<boardl;i++) { Loop through board

 if (board[i]==5) { If 5 is present

 return (i); Return its index

 } Close if

 } Close for

If even number available, 2, 4, 6, or 8, return its

position in board

Use fact that these numbers are the even ones

 for (var i = 0;i<boardl;i++) { Loop through all the numbers on the board

 if (0==board[i]%2) { Check if the number is even

 return (i); Return index to this number

 } Close if

 } Close for

 �var ch = Math.floor(Math.

random(0,boardl));

Set up for random move

 return (ch); Return this number

} Close smartMove

function computerMove() { Header for computerMove

 if (board.length<1) { If board is exhausted

 statusref.innerHTML="Cat wins!"; Set message

 return; return

 } Close if

(continued)

Chapter 6 Add to 15 Game

217

Table 6-2.  (continued)

Code Line Description

 var which = smartChoice(); Get the smartChoice

 var n = board[which]; Get the number for that choice

 take(n); Invoke take (which will remove the number

from the board)

 numbers[n-1].style.top = "150px"; Position the number on the computer's side

 �numbers[n-1].removeEventListener

("click",addToPlayer);

Remove event

 computer.push(n); Add to the computer array

 var holder = occupied[n-1]; holder holds groups with n

 for (var i=0;i<holder.length;i++) { Loop through all the groups that holder

belongs to

 cgroupcount[holder[i]]++; Increment the count in cgroupcount

 if (cgroupcount[holder[i]]==3) { If any group is now at 3

 �statusref.innerHTML ="Computer

wins "+groups[holder[i]];

Send out message

 game = false; Turn off play This may not be necessary

 return; return

 } Close if

 } Close for

 if (board.length<1) { Check again for end of game, without a win

 statusref.innerHTML="Cat wins!"; Set message

 } Close if

 else { else continue. Turn game back on

 game = true; Turn game on for player

 } Close else

} Close computerMove

(continued)

Chapter 6 Add to 15 Game

218

Table 6-2.  (continued)

Code Line Description

function setUpBoard() { Header for setUpBoard

 var dv; Will hold each newly created span element

 var xpos; Used in computation of horizontal position

 for (var i=1; i<10; i++) { For loop, creating and positioning all the

numbers

 �dv = document.

createElement("span");

Create the span elements

 �dv.addEventListener("click",

addToPlayer,false);

Set up event handling for clicking on each

number

 dv.innerHTML = i.toString(); Set label

 xpos = startx + i*wedge; Determine horizontal position

 dv.style.left=xpos.toString()+"px"; Set horizontal position

 dv.style.top ="240px"; Set vertical position

 document.body.appendChild(dv); Add the newly created div to the body

 dv.n = i; Set an attribute to hold the number

 numbers.push(dv); Add to the numbers array

 } Close for loop

} Close function

function take(n) { Header for take function

 var nAt = board.indexOf(n); Find this number in the array

 if (nAt>-1) { Should always be true

 board.splice(nAt,1); Removes element from board array; movement

is done in the calling program

 } Close if

} Close take function

(continued)

Chapter 6 Add to 15 Game

219

Table 6-2.  (continued)

Code Line Description

function addToPlayer(ev) { Header for addToPlayer, the event handler for

clicking on a number

 if (game) { If game is started

 var nn = ev.target.n; Get the number clicked on

ev.target.removeEventListener

("click",addToPlayer);

Remove event

 player.push(nn); Add this to the player array

 numbers[nn-1].style.top = "350px"; Reposition the element

 take(nn); Remove from the board array

 var holder = occupied[nn-1]; holder holds groups with this number

 for (i=0;i<holder.length;i++) { Going through all the groups

 pgroupcount[holder[i]]++; Increment pgroupcount since player now has

one more in that group

 if (pgroupcount[holder[i]]==3) { If this count is now 3…

 �statusref.innerHTML="Player wins

"+groups[holder[i]];

The player wins

 game = false; Set game flag to false

 return ; Return (leave loop)

 } Close if true clause

 } Close for loop

 game = false; Temporarily stop player moves

 setTimeout(computerMove,1000); Invoke computermove after a pause

 } Close if(game) true clause

 else { else

 �statusref.innerHTML="Reload for new

game.";

Put out message

(continued)

Chapter 6 Add to 15 Game

220

Table 6-2.  (continued)

Code Line Description

 } Close the else

} Close the function

</script> Close the script tag

<body onLoad="init();"> Body tag

<h1>Player against Computer</h1>
 Header

Player goes first: click on number.

First to have a set of 3 adding

to 15 wins. Reload for new game.

Instructions

<p> Spacing

Computer Computer area

 Spacing

</p> Spacing

<hr/> Horizontal rule

Board Board area

 Spacing

<hr/> Horizontal rule

Player Player area

 Spacing

<hr/> Horizontal rule

<div id="status"> Div for status

</div> Close div

</body> Close body tag

</html> Close html tag

Chapter 6 Add to 15 Game

221

�Testing and Uploading the Application
This source material for this application consists of just one HTML document. The

source material contains a Word document on an issue regarding the Add to 15 game.

�Summary
In this chapter, you examined how to implement a two-person game, by providing the

single player with an opponent and managing the game. You learned about and gained

experience with the following:

•	 Defining and manipulating arrays

•	 How to build a user interface for the player, including setting up

events for clicking on objects on “the board” and programming a

pause

•	 Taking precautions against bad behavior by a player

In the next chapter, we move on to the spatially fascinating world of paper folding.

We explore how to produce directions for an origami model of a talking fish using line

drawings, video clips, and the drawing of photographs on canvas. The techniques can be

applied to different types of directions.

Chapter 6 Add to 15 Game

223
© Jeanine Meyer 2018
J. Meyer, HTML5 and JavaScript Projects, https://doi.org/10.1007/978-1-4842-3864-6_7

CHAPTER 7

Origami Directions:
Using Math-Based Line
Drawings, Photographs,
and Videos
In this chapter, you will learn the following:

•	 How to use mathematics to write JavaScript functions to produce

precise line drawings

•	 A methodology for combining line drawings, photographs, and

videos, along with text for sequential instructions

•	 A methodology that facilitates development by letting you proceed in

steps, and even go back and insert or change previous work

�Introduction
The project for this chapter is a sequential set of directions for folding an origami

model, a talking fish. However, you may read it with any topic in mind in which you

want to present to your viewer a sequence of diagrams, including the ability to move

forward and back, and with the diagrams consisting of line drawings or images from

files or video clips.

224

Note  Origami refers to the art of paper folding. It is commonly associated with Japan,
but has roots in China and Spain as well. Traditional folds include the water bomb, the
crane, and the flapping bird. Lillian Oppenheimer is credited with popularizing origami
in the United States and started the organization that became the American national
organization OrigamiUSA. She personally taught me the business card frog in 1972.
An HTML5 program for the business card frog is included in the downloads for this
chapter. Origami is a vibrant art form practiced around the world, as well as a focus
of research in mathematics, engineering, and computational complexity.

Figure 7-1 shows the opening screen of the Talking Fish application, origamifish.html.

The screen shows the standard conventions for origami diagrams, modified by me

to include color. The standard origami paper, called kami, is white on one side and a

nonwhite color on the other.

Figure 7-1.  Opening screen

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

225

Note  I have reduced the set of origami moves. For example, I omitted the
representation for a reverse fold, which is used to turn the lips inside out. These
folds generally are preceded by what are termed preparation folds, which I
describe for the talking fish.

The folder can click Next Step (at this point in the sequence, Go Back does nothing)

to get to the first actual step of the instructions, shown in Figure 7-2. Of course, it is

possible to add programming to remove the Go Back button at the start and the Next

Step button at the end.

Figure 7-2.  First step, showing the square of paper. The instructions say to turn
the paper.

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

226

Skipping ahead, Figure 7-3 shows a later step in the folding. Notice that the colored

side of the paper is showing. An unfolded fold line is indicated by the skinny vertical line,

and the fold to be made next (folding down the corner) is shown by a colored diagonal of

dashes in the upper-right corner.

Figure 7-3.  Folding a corner down to a fold line

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

227

Later in the construction of the model, the folder must perform a sink fold. This is

considered a difficult move. Figure 7-4 shows what is called the crease pattern prior to

the sink: the folds are indicated as mountain folds or valley folds.

Figure 7-4.  Step with standard diagram for sink

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

228

Figure 7-5.  Paused video showing sink step

I decided to supplement the line drawing with a video clip showing the sink step.

Figure 7-5 shows a frame from the video. I (the folder) have used the video controls to

pause the action. The folder can replay the video clip and go back to the crease pattern

repeated times.

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

229

The next step requires the folder to fold the triangular flap on the right backward,

dividing the angle. Notice that the angle is indicated by an arc.

Sinking is still a challenge, but viewing the video clip can help. The folder can replay

and pause the video clip. Figure 7-6 shows the next step after the sink. Going from line

drawing to video clip to line drawing is easy for the user/folder, and it will turn out to be

straightforward for the developer as well.

Figure 7-6.  Step after sink (first video clip)

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

230

Moving on again in the folding, there is a step for which I decided that a

photograph or two was the best way to convey what needs to be done. Figure 7-7 shows

a picture of a model in process, viewed from above (looking into the mouth down the

throat of the fish).

Figure 7-7.  Photograph showing fish throat

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

231

Figure 7-8 shows the result of moving the folded material to one side, as instructed in

the directions shown in Figure 7-7.

Figure 7-8.  Photograph of the fish with the throat fixed

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

232

The directions end with another video clip, this one showing the fish talking,

performed by the folder gently pressing on the top and bottom. Figure 7-9 shows a frame

in the video.

Figure 7-9.  Video showing talking fish

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

233

�Critical Requirements
There is a standard format for origami directions, commonly referred to as diagrams,

and I built on that standard. In this approach, each step shows the next fold to be made

using a set typography. The most basic folds either assume a valley shape when unfolded

or a mountain shape, and this is indicated by dashed or dotted and dashed lines. Often,

folds are unfolded in the process of making an origami model. Sometimes the places

where there were folds are indicated by thin lines and sometimes they are indicated by

dashes for valley folds and dots and dashes for mountain folds.

My aim was to produce line drawings, similar to those found in books, with

calculations for the coordinate positions of the critical points and lines. I did not want to

make drawings by hand and scan them, nor did I want to use a typical engineering CAD

program. I did not want to measure and record lengths or angles, but have JavaScript do

that task for me. This would work even for folds done “to taste,” as the origami jargon

goes, because I could determine the exact positions I chose to use. Using basic algebra,

geometry, and trigonometry provides a way to achieve exact positions for the line

drawings by calculating the coordinates of endpoints of lines.

Steps for origami typically come with text instructions. Also, arrows are sometimes

used. I wanted to follow the standard while still taking advantage of the fact that these

instructions would be delivered on a computer, with color and the opportunity for other

media.

Thinking about the talking fish and some other folds, I decided to use photographs

and videos for operations for which line drawings may not be good enough for you.

Note  The challenge I set myself for the origami diagrams was to follow the
standard but also take advantage of new technology of HTML5. This is typical
when moving to a new medium and technology. You do not want to abandon a
standard that your audience may feel is essential, but you also want to use what is
available if it solves real problems.

A subtler requirement is that I wanted to test the application as I developed it. This

meant a flexible but robust way to specify steps.

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

234

�HTML5, CSS, JavaScript Features, and Mathematics
I will now describe the HTML5 features and the programming techniques used to

address the requirements for the origami directions project. The best approach is to start

with the overall mechanism for presenting steps, and then explain how I derived the

first set of values for the positions. Then I’ll explain the utility functions for drawing the

valley, mountain, and arrows, and for calculating intersection points and proportions.

Lastly, I will review briefly the display of images and the playing of video.

�Overall Mechanism for Steps
The steps for the origami directions are specified by an array called steps. Each element

of the array is itself a two-element array holding the name of a function and a piece of

text that will appear on the screen. The final value of the steps array in origamifish.html

is the following:

var steps= [

 [directions,"Diagram conventions"],

 [showkami,"Make quarter turn."],

 [diamond1,"Fold top point to bottom point."],

 [triangleM,"Divide line into thirds and make valley folds and unfold "],

 [thirds,"Fold in half to the left."],

 [rttriangle,"Fold down the right corner to the fold marking a third. "],

 [cornerdown,"Unfold everything."],

 [unfolded,"Prepare to sink middle square by reversing folds as indicated ..."],

 [�changedfolds,"note middle square sides all valley folds, some other

folds changed.

 Flip over."],

 [precollapse,"Push sides to sink middle square."],

 [playsink,"Sink square, collapse model."],

 [�littleguy,"Now fold back the right flap to center valley fold. You are

bisecting the 

 indicated angle."],

 [oneflapup,"Do the same thing to the flap on the left"],

 [�bothflapsup,"Make fins by wrapping top of right flap around 1 layer and

left around 

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

235

 back layer"],

 [finsp,"Now make lips...make preparation folds"],

 [preparelips,"and turn lips inside out. Turn corners in..."],

 [showcleftlip,"...making cleft lips."],

 [lips,"Pick up fish and look down throat..."],

 [�showthroat1,"Stick your finger in its mouth and move the inner folded

material to one 

 side"],

 [showthroat2,"Throat fixed."],

 [�rotatefish,"Squeeze & release top and bottom to make fish's mouth close

and open"],

 [playtalk,"Talking fish."]

];

I did not come up with the steps array when I began building the application.

Instead, I added to the steps array as I went along, including inserting new entries and

changing the content and/or the names of the functions. I began with the following

definition of the steps array:

var steps= [

 [showkami,"Make quarter turn"],

 [diamond,"Fold top point to bottom point."]

];

It took me some time to get into the rhythm of showing the last stage of folding, with

the addition of markings for the next step. The end result is a presentation using a single

HTML page that proceeds through 21 steps containing vector drawings, photographs,

and video, following a similar format to a PowerPoint presentation—that is, with the

ability to go forward or backward.

Going forward and backward are done by the functions donext and goback. But first

I need to explain how the whole thing starts. As has been the case for all the projects so

far, a function called init is invoked by the action of the onLoad attribute in the <body>

tag. The code sets global variables and invokes the function for presenting the next step,

donext. The init function is

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

236

function init() {

 canvas1 = document.getElementById("canvas");

 ctx = canvas1.getContext("2d");

 cwidth = canvas1.width;

 cheight = canvas1.height;

 ta = document.getElementById("directions");

 nextstep = 0;

 ctx.fillStyle = "white";

 ctx.lineWidth = origwidth;

 origstyle = ctx.strokeStyle;

 ctx.font = "15px Georgia, Times, serif";

 donext();

}

The variable nextstep is the pointer, so to speak, into the steps array. I start it off

at zero.

The donext function has the task of presenting the next step in the progression of

steps to produce the origami model. The function starts by checking if it is within range;

that is, if it has been incremented to point beyond the end of the steps array, the value

of nextstep is set to the last index. Next, the function pauses and removes from display

the last video. It restores the canvas to its full height, which my code would have changed

when playing a video clip. The function also sets the video variable to undefined, so the

removal statements do not have to be executed again for that video. In all cases, donext

clears the canvas and resets the linewidth. The donext function then displays the next

step. The display includes parts: a graphic part consisting of a line drawing, video or

image and a text part consisting of the instructions. The donext function invokes the

drawing function indicated by the first (i.e., 0th) element of the inner array:

steps[nextstep][0]();

and displays the text, using the second (i.e., first) element of the inner array:

ta.innerHTML = steps[nextstep][1];

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

237

The last statement in the donext function is to increment the pointer. The whole

donext function is

function donext() {

 if (nextstep>=steps.length) {

 nextstep=steps.length-1;

 }

 if (v) {

 v.pause();

 v.style.display = "none";

 v = undefined;

 canvas1.height = 480;

 }

 ctx.clearRect(0,0,cwidth,cheight);

 ctx.lineWidth = origwidth;

 steps[nextstep][0]();

 ta.innerHTML = steps[nextstep][1];

 nextstep++;

}

Coding the goback function took much longer in thinking time than its size would

suggest. The nextstep variable holds the index for the next step. This means that going

back requires the variable to be decremented by 2. A check must be made that the

pointer is not too low—that is, less than zero. Lastly, the goback function invokes donext

to display what has been set as nextstep. The code is

function goback() {

 nextstep = nextstep -2;

 if (nextstep<0) {

 nextstep = 0;

 }

 donext();

}

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

238

�User Interface
The user, who I refer to as the folder, has two buttons, labeled Next Step and Go Back.

They are implemented using the HTML5 button element, and invoke the goback and

donext functions, respectively. My choice of two different colors for the buttons—red

for Go Back and green for Next Step—can be debated, as can the fact that the wording

is not consistent. However, it does give me a chance to remind you of the significance

of the word Cascading in the name Cascading Style Sheets. I use a directive in the style

element in the head element and then I also use the following markup in the body

element: The last style directive is what is controlling and gives the buttons the colors.

<button onClick="goback();" style="color: #F00">Go back </button>

<button onClick="donext();" style="color: #03F">Next step </button>

The color designations, each only three characters, are the equivalent of #FF0000 and

#0033FF.

These two sections have described the basic mechanism for sequential directions. It

assumes that each step is represented by a function and text. The next section will show

how the coordinate values are set.

�Coordinate Values
The line drawing is accomplished using HTML5 canvas functions and variables, mostly

indicating x and y values. The variables appear in the code as var statements with

initializations. I wrote these statements as I worked through making the model step by

step, though in terms of JavaScript, they act as constants, and the values are set when the

program is loaded. Figure 7-10 shows the third step of the sequence, with annotations for

points a, b, c, and d.

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

239

How did I determine the coordinates for the four points? As a foundation, I specified

the location of point a. I also specified that the width and height of the paper was four

inches and the conversion from inches to pixels was 72. The variable declarations are

var kamiw = 4;

var kamih = 4;

var i2p = 72;

var ax = 10;

var ay = 220;

The variable names kamiw and kamih refer to the width and height of the standard

square paper for origami. From now on, everything is calculated. The first value required

is the size of the diagonal of the paper. For a square, using the Pythagorean theorem, the

diagonal is the length of a side times the square root of 2. The following statement setting

the variable diag multiples the side (kamiw) by the square root of 2 and by the factor

indicating the inches-to-pixels conversion.

var diag = kamiw* Math.sqrt(2.0)*i2p;

Figure 7-10.  Labels for corners

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

240

Most other programming languages contain built-in code for many standard

mathematical functions so programmers do not have to reinvent the wheel. In

JavaScript, these generally are supplied as methods of the Math class. You can do online

searches to determine the exact names and usage.

With this, the values for the positions b, c, and d are expressions using the existing

values.

var bx = ax+ .5*diag;

var by = ay - .5*diag;

var cx = ax + diag;

var cy = ay;

var dx = bx;

var dy = ay + .5*diag;

I developed the expressions for the variables by making the model and determining

how new positions were based on old ones. These variables are used by the functions

specified in the steps array to draw lines indicating the edges of the model, fold lines,

arrows, and angles. Some calculations used general mathematical formulas. The next

two sections cover the utility functions: functions used by the step functions.

�Utility Functions for Display
As shown in Figure 7-1, a valley fold is indicated by a line made up of dashes.

A mountain fold is indicated by a line made up of dots and dashes. This is standard

convention for origami directions and makes it possible for folders to follow directions

in books in different languages. Either one can be the default color (black) or another

color. I need to set up variables for the basics: dash length, dot length, the gap between

two dashes, the gap between the dots, and the gap between the last dot and a dash. It is

easiest to understand what is needed by looking at the functions first and then defining

the necessary values. The valley function is defined as follows:

function valley(x1,y1,x2,y2,color) {

 var px=x2-x1;

 var py = y2-y1;

 var len = dist(x1,y1,x2,y2);

 var nd = Math.floor(len/(dashlen+dgap));

 var xs = px/nd;

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

241

 var ys = py/nd;

 if (color) ctx.strokeStyle = color;

 ctx.beginPath();

 for (var n=0;n<nd;n++) {

 ctx.moveTo(x1+n*xs,y1+n*ys);

 ctx.lineTo(x1+n*xs+dratio*xs,y1+n*ys+dratio*ys);

 }

 ctx.closePath();

 ctx.stroke();

 ctx.strokeStyle = origstyle;

}

The valley function determines how many dashes there will be. This is done by

dividing the length of the valley line by the total length of a dash and the gap between

dashes. If this is not a whole number, the last-and-partial-dash-gap combination is

dropped. The Math.floor method accomplished this for us. Math.floor(4.3) returns 4.

The variables xs and ys are the increments in x and y, respectively. The color

parameter may or may not be present. The if (color) statement changes the stroke

color if the parameter is present. The heart of the function is the for loop that draws

each dash.

The mountain function is similar, but more complicated because of the nature of

the mountain fold typography: combinations of dashes followed by a gap equal to a dot,

then a dot, and then another gap. The mountain function is as follows:

function mountain(x1,y1,x2,y2,color) {

 var px=x2-x1;

 var py = y2-y1;

 var len = dist(x1,y1,x2,y2);

 var nd = Math.floor(len/ddtotal);

 var xs = px/nd;

 var ys = py/nd;

 if (color) ctx.strokeStyle = color;

 ctx.beginPath();

 for (var n=0;n<nd;n++) {

 ctx.moveTo(x1+n*xs,y1+n*ys);

 ctx.lineTo(x1+n*xs+ddratio1*xs,y1+n*ys+ddratio1*ys);

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

242

 ctx.moveTo(x1+n*xs+ddratio2*xs,y1+n*ys+ddratio2*ys);

 ctx.lineTo(x1+n*xs+ddratio3*xs,y1+n*ys+ddratio3*ys);

 }

 ctx.closePath();

 ctx.stroke();

 ctx.strokeStyle = origstyle;

}

With the statements of the functions in mind, here is how I define the variables used

by both functions:

var dashlen = 8;

var dgap = 2.0;

var ddashlen = 6.0;

var ddot = 2.0;

var dratio = dashlen/(dashlen+dgap);

var ddtotal = ddashlen+3*ddot;

var ddratio1 = ddashlen/ddtotal;

var ddratio2 = (ddashlen+ddot)/ddtotal;

var ddratio3 = (ddashlen+2*ddot)/ddtotal;

Lines are used to show the edges of the paper. I set the width for these lines to be 2.

For places in which the paper has been folded and then unfolded, I use a skinnier line:

line width set to 1. I wrote a function to make skinny lines:

function skinnyline(x1,y1,x2,y2) {

 ctx.lineWidth = 1;

 ctx.beginPath();

 ctx.moveTo(x1,y1);

 ctx.lineTo(x2,y2);

 ctx.closePath();

 ctx.stroke();

 ctx.lineWidth = origwidth;

}

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

243

At one point for the directions for the origami fish, I decided to use short, downward-

pointing arrows. I wrote a general function for it, which you can study in the commented

code in the “Building the Application and Making It Your Own” section. There were two

places when I decided to show a long curved arrow, either horizontal or vertical. This

turned out to be the longest function in the project, and I will not go into more detail here.

You can study the function in the complete commented code listing. Fortify yourself with

the drink of your choice. This is a complex function because of the many cases that need to

be handled separately: a vertical arrow going up or down, or a horizontal arrow going left

to right or right to left. The arrow is made as an arc of a circle whose center is calculated to

be far away from the arc, and two little lines indicating the arrowhead.

�Utility Functions for Calculation
You have seen the first mathematical calculation required for this project in previous

chapters. It’s called dist, and it calculates the distance between two points:

function dist(x1,y1,x2,y2) {

 var x = x2-x1;

 var y = y2-y1;

 return Math.sqrt(x*x+y*y);

}

The next function to discuss is determining the intersection point between two lines.

The intersection is a point that satisfies the equation for both lines. In the origami fish

example, look at Figure 7-14. I (in my program) will need to calculate the intersection

of the line from k to n and the line from s to q. Look further along in this chapter to

Figure 7-17. The xx point is the intersection. The code from the program is

var xxa = intersect(sx,sy,qx,qy,kx,ky,nx,ny);

var xxx = xxa[0];

var xxy = xxa[1];

Lines are defined by two points, and each point is defined by two numbers. This

means that the intersect function has 2 × 2 × 2 input parameters. My function is

not general; it only works when the lines are not vertical and when there is indeed an

intersection. This is acceptable for my use for the origami fish, but if you take this for

another application, you may need to do more work.

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

244

Let’s now focus on the mathematical representation of lines. There are different

equations, but the one I use is called the point slope form. The slope of a line is the change

in y divided by the change in x between any two points. Following convention, the slope is

named m. The equation for a line with slope m going through the point (x1,y1) is

y – y1 = m * (x – x1)

Note that this line is mathematics, not JavaScript. Returning now to programming,

I determined the slopes and equations for each of the lines passed to the intersect

function.

The intersect function sets m12 to be the slope of the line going from (x1,y1)

to (x2,y2) and m34 to be the slope of the line going from (x3,y3) to (x4,y4). The code

essentially sets the two y values:

y = m12 * (x – x1) + y1 and y = m34 * (x – x3) + y3

The next step is to set these two expressions equal to each other and solve for x. What

this accomplishes is calculating a value for x that lies on both lines. With that value of x,

I use one of the two equations to get the corresponding y. The pair x,y represents a

point—in fact, the only point—that is on both lines. This is what is meant by intersection.

I write the code for the function to return the array [x,y]. Here is the complete code:

function intersect(x1,y1,x2,y2,x3,y3,x4,y4) {

 // only works on line segments that do intersect and

 // are not vertical

 var m12 = (y2-y1)/(x2-x1);

 var m34 = (y4-y3)/(x4-x3);

 var m = m34/m12;

 var x = (x1-y1/m12-m*x3+y3/m12)/(1-m);

 var y = m12*(x-x1)+y1;

 return ([x,y]);

}

At this point, you may have had a sudden drop in confidence that whatever you do

remember from high school mathematics classes may not apply because the coordinate

system for the screen is upside down. The vertical values increase moving down the screen.

It turns out that these equations still work (although our interpretation may differ).

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

245

For example, a line that starts at (0,0) and goes to (100,100) has a calculated slope of

positive 1, even though we may think of it as sloping down. In the upside-down world, it

has positive slope.

Another calculation required for the origami fish is what I have named proportion.

This function takes five input parameters. (x1,y1) and (x2,y2) define a line segment. The

fifth parameter is p, indicating proportion. The task of the function is to calculate the

(x,y) position on the line segment that is p of the way from (x1,y1) to (x2,y2).

function proportion(x1,y1,x2,y2,p) {

 var xs = x2-x1;

 var ys = y2-y1;

 var x = x1+ p*xs;

 var y = y1 + p* ys;

 return ([x,y]);

}

This covers what I term the utility functions of the origami project. The three

calculation functions would be applicable to other applications.

�Step Line Drawing Functions
The functions for producing the diagrams for a step in the sequence use the path-

drawing facilities of HTML5 and the variables, which have been set using the calculation

utility functions or built-in Math methods. I won’t cover all of them in this section, but

will explain a couple. For example, the function triangleM (more on this function

following) has the task of producing the diagram for the step shown in Figure 7-11.

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

246

Note  My instructions do not suggest ways to do this. A common way that folders
do this is to make a guess for the point one-third of the way from one end—say,
the left. Fold the right point to that point and make a tiny pinch. Then fold the left
end to the pinch, and repeat until you don’t see a change in the pinch marks. This
method demonstrates some nice mathematics, namely limits. Whatever error you
make in your initial guess will be reduced to one-quarter of its original size. If you
keep doing this, you’ll quickly get to something acceptable.

Figure 7-12 shows the picture annotated with labels for the critical points e, f,

g, and h.

Figure 7-11.  Dividing-into-thirds step

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

247

The variables defining the four points are

var e = proportion(ax,ay,cx,cy,.333333);

var ex = e[0];

var ey = e[1];

var f = proportion(ax,ay,cx,cy,.666666);

var fx = f[0];

var fy = f[1];

var g = proportion(ax,ay,dx,dy,.666666);

var gx = g[0];

var gy = g[1];

var h = proportion(cx,cy,dx,dy,.666666);

var hx = h[0];

var hy = h[1];

The function triangleM is defined as follows:

function triangleM() {

 triangle();

 shortdownarrow(ex,ey);

 shortdownarrow(fx,fy);

 valley(ex,ey,gx,gy,"orange");

 valley(fx,fy,hx,hy,"orange");

}

Figure 7-12.  Dividing a line into thirds and folding

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

248

The function draws a triangle, then draws two short downward arrows above e and f,

and then draws two valley lines of color orange.

The triangle function is defined to be

function triangle() {

 ctx.fillStyle="teal";

 ctx.beginPath();

 ctx.moveTo(ax,ay);

 ctx.lineTo(cx,cy);

 ctx.lineTo(dx,dy);

 ctx.lineTo(ax,ay);

 ctx.closePath();

 ctx.fill();

 ctx.stroke();

}

The triangle function is not general, but draws this specific triangle. A general

function would be

function generaltriangle(px,py, qx,qy, rx,ry, scolor, fcolor) {

 ctx.fillStyle=fcolor;

 ctx.strokeStyle = scolor;

 ctx.beginPath();

 ctx.moveTo(px,py);

 ctx.lineTo(qx,qy);

 ctx.lineTo(rx,ry);

 ctx.lineTo(px,py);

 ctx.closePath();

 ctx.fill();

 ctx.stroke();

}

Also, do not assume that I knew to write this function. I probably put this coding

into the first function and then when I got to the next step of the model, realized that I

needed a triangle again. I extracted the code I had written and renamed the first function

triangleM (for “triangle marked”). I had the triangleM function and the thirds function

each invoke the function named triangle.

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

249

Figure 7-13 shows a step in the model that I will illustrate with a function I named

littleguy, because that is what it looks like to me.

Figure 7-13.  After sink, what I call littleguy

Figure 7-14 shows the labeling of the critical points.

Figure 7-14.  Labeling of critical points for littleguy

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

250

The definitions of the corresponding variables are

var kx = ax+diag/3;

var ky = ay;

var lx = kx + diag/3;

var ly = ay;

var mx = ax + diag/6;

var innersq = Math.sqrt(2)*diag/6;

var my = ay + innersq*Math.sin(Math.PI/4);

var nx = ax+diag/3+diag/6;

var ny = my;

var px = mx;

var py = dy;

var rx = nx;

var ry = py;

var qx = kx;

var qy = hy;

var dkq = qy-ky;

var sx = kx + (dkq/Math.cos(Math.PI/8))*Math.sin(Math.PI/8);

var sy = ay;

Notice that I don’t try to be sparing with variables. Yes, rx is the same value as nx, but

it is easier for me to think of them as distinct things.

The code for littleguy follows:

function littleguy() {

 ctx.fillStyle="teal";

 ctx.beginPath();

 ctx.moveTo(ax,ay);

 ctx.lineTo(kx,ky);

 ctx.lineTo(mx,my);

 ctx.lineTo(ax,ay);

 ctx.moveTo(kx,ky);

 ctx.lineTo(lx,ly);

 ctx.lineTo(px,py);

 ctx.lineTo(mx,my);

 ctx.lineTo(kx,ky);

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

251

Figure 7-15.  Labeling at fold in half step

 ctx.moveTo(nx,ny);

 ctx.lineTo(rx,ry);

 ctx.lineTo(qx,qy);

 ctx.lineTo(nx,ny);

 ctx.closePath();

 ctx.fill();

 ctx.stroke();

 skinnyline(qx,qy,kx,ky);

 ctx.beginPath();

 ctx.arc(qx,qy,30,-.5*Math.PI,-.25*Math.PI,false);

 ctx.stroke();

 mountain(qx,qy,sx,sy,"orange")

}

The description of the arc in degrees is that it goes from –90 degrees to –45 degrees.

Note that zero degrees is horizontal and positive degrees go clockwise.

Figures 7-15, 7-16, 7-17, and 7-18 show the locations of the remaining critical

positions for the model.

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

252

Figure 7-16.  Preparing to sink center

Figure 7-17.  After wraparound steps

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

253

Figure 7-18.  After making lips

Use the figures to help understand the code for setting the values of the variables.

For example, as I mentioned in describing the intersect function, looking at

Figures 7-14 and 7-17, you can see that the point xx, represented by xxx and xxy, is the

intersection of the line from s to q and k to n.

One more of the step functions deserves explanation. The directions right before the

end had the fish with the head pointed down the screen. I wanted to make the diagram

right before the last video clip be oriented horizontally to match the video clip about

to be displayed. This is accomplished using the canvas coordinate transformations

of HTML5. The previous function is named lips. The rotatefish function saves the

current, which is the original, coordinate system. It then translates to a point on the

fish, invokes a rotation (90 degrees counterclockwise), and then undoes the translation.

The rotatefish function then invokes the lips function, which draws the fish, but now

oriented horizontally. Here is the code:

function rotatefish() {

 ctx.save();

 ctx.translate(kx,my);

 ctx.rotate(-Math.PI/2);

 ctx.translate(-kx,-my);

 lips();

 ctx.restore();

}

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

254

�Displaying a Photograph
The steps that display a photograph have the same structure as the ones that produce

a line drawing. For each image required for the application, I need to define an Image

object and set the src property to the name of the image file. The following statements

relate to the picture shown in Figure 7-7:

var throat1 = new Image();

throat1.src = "throat1.jpg";

function showthroat1() {

 ctx.drawImage(throat1,40,40);

}

The techniques shown in Chapter 5 to create a separate file defining the media and

generating code (including HTML markup) automatically may be appropriate here. I

wrote functions for each photograph and, as I explain in the next section, each video clip.

�Presenting and Removing a Video
The origamifish.html file has video elements for each of the two video clips, one with

the ID sink and the other with the ID talk. The style element has a directive for all

videos to not display:

video {display: none;}

The functions playsink and playtalk each make the video display, set the current time

to zero, play the video, and adjust the canvas height. The definition of playsink follows:

function playsink() {

 v = document.getElementById("sink");

 v.style.display="block";

 v.currentTime = 0;

 v.play();

 canvas1.height = 178;

}

With this discussion of the programming techniques and HTML5 features to use for

the origami directions project, we are now ready to look at the application as a whole.

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

255

�Building the Application and Making It Your Own
The quickest way to build on what you have learned in this chapter is to create directions

for another craft project similar to paper folding in the presence of line drawings and the

benefits of some photographs and video clips. You can build it step by step, creating the

functions you need. It may turn out that some functions are what I call utility functions:

functions used by other functions. You may also build up variables indicating positioning

as you need them. An informal summary/outline of the origami fish application follows:

•	 init for initialization

•	 donext and goback for moving forward and back through the steps

•	 Utility functions for drawing specific types of lines

•	 Utility functions for calculations

•	 Step functions (functions cited in the steps array)

Table 7-1 lists functions and groups of functions and indicates how they are invoked

and what functions they invoke.

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

256

Table 7-1.  Functions in the Origami Directions Project

Function Invoked/Called By Calls

init Invoked by action of the onLoad attribute

in the <body> tag

donext

donext Invoked by init, goback, and by the

onClick attribute in a button tag

goback Invoked by the onClick attribute in a

button tag

donext

Utility functions for drawing

(shortdownarrow, valley,

mountain, skinnyline, and

curvedarrow)

Invoked by the step functions

Utility functions for calculations

(dist, intersect, and

proportion)

Invoked mainly in var statements to set

variables representing critical positions in

the model

Step functions Invoked as elements in the steps array

in donext; some (fins, triangle,

diamond, rttriangle, diamondc, and

lips) are called by other step functions

Utility drawing

functions, the other

step functions

indicated

Table 7-2 shows the code for the basic application, with comments for each line.

Much of this code you have seen in previous chapters.

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

257

Table 7-2.  Complete Code for Origami Directions Project

Code Line Description

<!DOCTYPE html> Header

<html> html tag

<head> head tag

<title>Origami fish</title> Complete title

<style> style tag

button {font-size:large; font-

family:Georgia, "Times New Roman",

Times, serif;}

Directive for formatting buttons; note that

color is specified for each button in the body

element

#directions {font-family:"Comic Sans

MS", cursive;}

Directive for formatting all directions

video {display:none;} Turn off display of all video elements until

called on

</style> Closing style tag

<script> Starting script tag

var ctx; Will hold canvas context for all drawing

var cwidth; Width of canvas

var cheight; Height of canvas

var ta; Will hold element for text part of each step

var kamiw = 4; Set width of paper

var kamih = 4; Set height of paper

var i2p = 72; Set inches to pixels

var dashlen = 8; Set length of dash in valley fold

var dgap = 2.0; Set gap between dashes

var ddashlen = 6.0; Set dash length in mountain fold

var ddot = 2.0; Set dot length in mountain fold

var dratio = dashlen/(dashlen+dgap); Used for mountain line

(continued)

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

258

Table 7-2.  (continued)

Code Line Description

var ddtotal = ddashlen+3*ddot; Used for mountain line

var ddratio1 = ddashlen/ddtotal; Used for mountain line

var ddratio2 = (ddashlen+ddot)/ddtotal; Used for mountain line

var ddratio3 = (ddashlen+2*ddot)/

ddtotal;

Used for mountain line; all values used for

calculation of number of dashes and dots and

start and extents of dashes and dots

var kamix = 10; X position of paper in first step

var kamiy = 10; Y position of paper in first step

var nextstep; Pointer into steps array

function dist(x1,y1,x2,y2) { Header for dist function

 var x = x2-x1; Set difference in x

 var y = y2-y1; Set difference in y

 return Math.sqrt(x*x+y*y); Return square root of sum of squares

} Close dist function

function intersect(x1,y1,x2,y2,x3,y3,

x4,y4) {

Header for intersect function between two

lines, indicated by 2 × 2 points

 // �only works on line segments that

do intersection and

Good comments to keep in code: assumes

there is an intersection . . .

 // are not vertical . . . and assumes lines aren’t vertical; if they

were, the code would be dividing by zero,

which would produce an error

 var m12 = (y2-y1)/(x2-x1); Compute slope

 var m34 = (y4-y3)/(x4-x3); Compute slope

 var m = m34/m12; Used in calculation

 var x = (x1-y1/m12-m*x3+y3/m12)/(1-m); Solve for x

 var y = m12*(x-x1)+y1; Solve for y

(continued)

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

259

Table 7-2.  (continued)

Code Line Description

 return ([x,y]); Return pair

} Close intersect function

function init() { Header for init function

canvas1 = document.

getElementById("canvas");

Set canvas1

ctx = canvas1.getContext("2d"); Set context

cwidth = canvas1.width; Set cwidth

cheight = canvas1.height; Set cheight

ta = document.

getElementById("directions");

Set ta to hold the element for the text

directions

nextstep = 0; Initialize nextstep

ctx.fillStyle = "white"; Set fill style; will be used for erasing

ctx.lineWidth = origwidth; Set line width (set earlier)

origstyle = ctx.strokeStyle; Save stroke color

ctx.font = "15px Georgia, Times, serif"; Set font

donext(); Start with 0th step

} Close init function

function directions() { Header for directions, the first “step” shown

 ctx.fillStyle = "black"; Change fill style, for use in text

 �ctx.font = "15px Georgia, Times,

serif";

Set font

 ctx.fillText("Make valley fold", 10,20); Output explanation

 valley(200,18,300,18,"orange"); Make sample orange valley line

 ctx.fillText("Make mountain fold",10,50); Output explanation

 mountain(200,48,300,48,"orange"); Make sample orange mountain line

(continued)

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

260

Table 7-2.  (continued)

Code Line Description

 �ctx.fillText("unfolded fold

line",10,100);

Output explanation

 skinnyline(200,98,300,98); Make sample skinny line for unfolded fold line

 �ctx.fillText("When sense of fold

matters:",10,150);

Output explanation

 �ctx.fillText("unfolded valley fold",

10,180);

Continue

 valley(200,178,300,178); Make sample old valley

 �ctx.fillText("unfolded mountain

fold",10,210);

Output explanation

 mountain(200,208,300,208); Make sample old mountain

 ctx.fillStyle = "white"; Change fill style back

} Close directions function

function donext() { Header for donext function

 if (nextstep>=steps.length) { Check if nextstep is too big

 nextstep=steps.length-1; Reset

 } Close clause

 if (v) { Check if v is set

 v.pause(); Pause the video

 v.style.display = "none"; Make it not display

 v = undefined; Set v to undefined

 canvas1.height = 480; Restore height

 } Close clause

 ctx.clearRect(0,0,cwidth,cheight); Clear canvas

 ctx.lineWidth = origwidth; Reset line width

(continued)

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

261

Table 7-2.  (continued)

Code Line Description

 steps[nextstep][0](); Invoke the appropriate step function

 ta.innerHTML = steps[nextstep][1]; Display the accompanying text

 nextstep++; Increment nextstep

} Close donext function

function goback() { Header for goback

 nextstep = nextstep -2; Decrement nextstep by 2 (because it is

already one ahead)

 if (nextstep<0) { Check if nextstep is now too low

 nextstep = 0; Reset

 } Close clause

 donext(); Invoke donext

} Close goback function

function shortdownarrow(x,y) { Header for short-downward-arrow function

 ctx.beginPath(); Start path

 ctx.moveTo(x,y-20) Move to right above the (x,y) position

 ctx.lineTo(x,y-7); Draw line to just above the (x,y)

 ctx.moveTo(x-5,y-12); Move to the left and up

 ctx.lineTo(x,y-7); Draw diagonal line

 ctx.moveTo(x+5,y-12); Move to the right and up

 ctx.lineTo(x,y-7); Draw diagonal line

 ctx.closePath(); Close path

 ctx.stroke(); Draw the complete path: a short arrow

} Close shortdownarrow function

function proportion(x1,y1,x2,y2,p) { Header for proportion function

 var xs = x2-x1; Set difference in x

(continued)

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

262

Table 7-2.  (continued)

Code Line Description

 var ys = y2-y1; Set difference in y

 var x = x1+ p*xs; Calculate new x

 var y = y1 + p* ys; Calculate new y

 return ([x,y]); Return pair

} Close proportion function

function skinnyline(x1,y1,x2,y2) { Header for skinnyline function

 ctx.lineWidth = 1; Set line width

 ctx.beginPath(); Start path

 ctx.moveTo(x1,y1); Move to start

 ctx.lineTo(x2,y2); Line to finish

 ctx.closePath(); Close path

 ctx.stroke(); Make stroke

 ctx.lineWidth = origwidth; Reset line width

} Close skinnyline

var origstyle; Will hold original color

var origwidth = 2; Set to line width for most lines

function valley(x1,y1,x2,y2,color) { Header for valley function

 var px=x2-x1; Set difference in x

 var py = y2-y1; Set difference in y

 var len = dist(x1,y1,x2,y2); Determine length

 var nd = Math.floor(len/(dashlen+dgap)); How many dashes and gaps

 var xs = px/nd; Call this the x factor

 var ys = py/nd; Call this the y factor

 if (color) ctx.strokeStyle = color; If the color parameter was given, set stroke

color to this value

(continued)

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

263

Table 7-2.  (continued)

Code Line Description

 ctx.beginPath(); Begin path

 for (var n=0;n<nd;n++) { Loop for number of dashes

 ctx.moveTo(x1+n*xs,y1+n*ys); Move to next position

 �ctx.lineTo(x1+n*xs+dratio*xs,

y1+n*ys+dratio*ys);

Draw dash

 } Close for loop

 ctx.closePath(); Close path

 ctx.stroke(); Draw the path

 ctx.strokeStyle = origstyle; Reset stroke style

} Close valley function

function mountain(x1,y1,x2,y2,color)

{

Header for mountain function

 var px=x2-x1; Set difference in x

 var py = y2-y1; Set difference in y

 var len = dist(x1,y1,x2,y2); Determine length

var nd = Math.floor(len/ddtotal); Determine number of dash and dot

combinations

 var xs = px/nd; Set x factor

 var ys = py/nd; Set y factor

if (color) ctx.strokeStyle = color; If the color parameter was given, set stroke

color to this value

 ctx.beginPath(); Begin path

 for (var n=0;n<nd;n++) { Loop for number of combinations

 ctx.moveTo(x1+n*xs,y1+n*ys); Move to next one

(continued)

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

264

Table 7-2.  (continued)

Code Line Description

 �ctx.lineTo(x1+n*xs+ddratio1*xs,

y1+n*ys+ddratio1*ys);

Draw the dash

 �ctx.moveTo(x1+n*xs+ddratio2*xs,

y1+n*ys+ddratio2*ys);

Move to start of dot

 �ctx.lineTo(x1+n*xs+ddratio3*xs,

y1+n*ys+ ddratio3*ys);

Draw the dot

 } Close loop

 ctx.closePath(); Close path

 ctx.stroke(); Draw the path

 ctx.strokeStyle = origstyle; Reset stroke style

} Close mountain function

function curvedarrow(x1,y1,x2,y2,px,py){ Header for curvedarrow from (x1,y1) to

(x2,y2) offset by (px,py)

 var arrowanglestart; Start angle

 var arrowanglefinish; Finish angle

 var d = dist(x1,y1,x2,y2); Distance

 var rad=Math.sqrt(4.25*d*d); The value 4.25 arrived at by experimentation to

get an attractive curve to the arrow

 var ctrx; X-coordinate of center of arc that is curved

arrow

 var ctry; Y-coordinate

 var ex; For the two little lines that make up the head of

the arrow

 var ey; For the two little lines that make up the head of

the arrow

(continued)

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

265

Table 7-2.  (continued)

Code Line Description

 var angdel = Math.atan2(d/2,2*d); Angle of the arc

 var fromhorizontal; Angle where arc starts

 ctx.strokeStyle = "red"; Set color

 ctx.beginPath(); Begin path

 if (y1==y2) { Horizontal arrow case

 �arrowanglestart = 1.5*Math.PI-

angdel;

Set starting angle

 �arrowanglefinish = 1.5*Math.

PI+angdel;

Set ending angle

 ctrx = .5*(x1+x2) +px; Calculate center x

 ctry = y1+2*d +py; Calculate center y

 if (x1<x2) { For arrows going left to right

 �ctx.arc(ctrx,ctry, rad,arrowangle

start,arrowanglefinish, false);

Draw arc

 �fromhorizontal=2*Math.PI-

arrowanglefinish;

Used in calculation

 �ex = ctrx+rad*Math.

cos(fromhorizontal);

Set x increment

 �ey = ctry - rad*Math.

sin(fromhorizontal);

Set y increment

 ctx.lineTo(ex-8,ey+8); Draw first little line

 ctx.moveTo(ex,ey); Move to other end

 ctx.lineTo(ex-8,ey-8); Draw line

 } Close arrows left to right

(continued)

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

266

Table 7-2.  (continued)

Code Line Description

else { Right to left

ctx.arc(ctrx,ctry, rad,arrowang

lefinish,arrowanglestart,

true);

Draw arc

fromhorizontal=2*Math.PI-

arrowanglestart;

Calculate for the lines

ex = ctrx+rad*Math.

cos(fromhorizontal);

Set x for little lines

ey = ctry - rad*Math.

sin(fromhorizontal);

Set y for little lines

 ctx.lineTo(ex+8,ey+8); Draw first line

 ctx.moveTo(ex,ey); Move to end of other line

 ctx.lineTo(ex+8,ey-8); Draw line

 } End clause

 ctx.stroke(); Do the drawing for either case

} End horizontal case

else if (x1==x2) { Vertical line

 arrowanglestart = -angdel; Set starting angle

 arrowanglefinish = angdel; Set finishing angle

 ctrx = x1-2*d+px; Calculate center x

 ctry = .5*(y1+y2) + py; Calculate center y

 if (y1<y2) { If downward arrow

 ctx.arc(ctrx,ctry,rad,arrowanglestart,

 arrowanglefinish,false);

Draw arc

 fromhorizontal=- arrowanglefinish; For calculation

(continued)

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

267

Table 7-2.  (continued)

Code Line Description

 �ex = ctrx+rad*Math.

cos(fromhorizontal);

Calculate x for little lines

 �ey = ctry - rad*Math.sin

(fromhorizontal);

Calculate y for little lines

 ctx.lineTo(ex-8,ey-8); Draw first little line

 ctx.moveTo(ex,ey); Move to end

 ctx.lineTo(ex+8,ey-8); Draw second little line

 } End downward clause

 else { Upward clause

 �ctx.arc(ctrx,ctry, rad,arrowang

lefinish,arrowanglestart,

 true);

Draw arc

fromhorizontal=- arrowanglestart; For calculation

ex = ctrx+rad*Math.

cos(fromhorizontal);

Calculate x for little lines

ey = ctry - rad*Math.

sin(fromhorizontal);

Calculate y for little lines

ctx.lineTo(ex-8,ey+8); Draw first little line

ctx.moveTo(ex,ey); Move to end of second line

ctx.lineTo(ex+8,ey+8); Draw little line

} End clause

ctx.stroke(); Draw arc

} Close vertical case

 ctx.strokeStyle = "black"; Reset color

}

// specific to fish What follows is specific to the fish model

(continued)

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

268

Table 7-2.  (continued)

Code Line Description

var steps= [Instruction steps: Function name and

accompanying text

 [directions,"Diagram conventions"],

 [showkami,"Make quarter turn."],

 [�diamond1,"Fold top point to bottom

point."],

 [�triangleM,"Divide line into thirds

and make valley folds and unfold "],

 [�thirds,"Fold in half to the

left."],

 [�rttriangle,"Fold down the right

corner to the fold marking a third. "],

 [cornerdown,"Unfold everything."],

 [�unfolded,"Prepare to sink middle

square by reversing folds as

indicated ..."],

 [�changedfolds,"note middle square

sides all valley folds, some other

folds changed. Flip over."],

 [�precollapse,"Push sides to sink

middle square."],

 [�playsink,"Sink square, collapse

model."],

 [�littleguy,"Now fold back the right

flap to center valley fold. You are

bisecting the indicated angle."],

 [�oneflapup,"Do the same thing to the

flap on the left"],

(continued)

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

269

Table 7-2.  (continued)

Code Line Description

 [�bothflapsup,"Make fins by wrapping

top of right flap around 1 layer and

left around back layer"],

 [�finsp,"Now make lips...make

preparation folds"],

 [�preparelips,"and turn lips inside

out. Turn corners in..."],

 [�showcleftlip,"...making cleft

lips."],

 [�lips,"Pick up fish and look down

throat..."],

 [�showthroat1,"Stick your finger in

its mouth and move the inner folded

material to one side"],

 [showthroat2,"Throat fixed."],

 [�rotatefish,"Squeeze & release top

and bottom to make fish's mouth

close and open"],

 [playtalk,"Talking fish."]

];

var diag = kamiw* Math.sqrt(2.0)*i2p; Length of diagonal

var ax = 10; Set x for left corner

var ay = 220; Set y for left corner

var bx = ax+ .5*diag; Calculate b (top corner)

var by = ay - .5*diag;

var cx = ax + diag; Calculate c (right)

(continued)

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

270

Table 7-2.  (continued)

Code Line Description

var cy = ay;

var dx = bx; Calculate d (bottom)

var dy = ay + .5*diag;

var e = proportion(ax,ay,cx,

cy,.333333);

See Figure 7-12 for e through h

var ex = e[0];

var ey = e[1];

var f = proportion(ax,ay,cx,

cy,.666666);

var fx = f[0];

var fy = f[1];

var g = proportion(ax,ay,dx,dy,.666666);

var gx = g[0];

var gy = g[1];

var h = proportion(cx,cy,dx,

dy,.666666);

var hx = h[0];

var hy = h[1];

var jx = ax + .5*diag; See Figures 7-15 and 7-16

var jy = ay;

var diag6 = diag/6;

var gry = ay-(gy-ay);

var kx = ax+diag/3; See Figure 7-14 for k through s

var ky = ay;

var lx = kx + diag/3;

(continued)

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

271

Table 7-2.  (continued)

Code Line Description

var ly = ay;

var mx = ax + diag/6;

var innersq = Math.sqrt(2)*diag/6;

var my = ay + innersq*Math.sin(Math.

PI/4);

var nx = ax+diag/3+diag/6;

var ny = my;

var px = mx;

var py = dy;

var rx = nx;

var ry = py;

var qx = kx;

var qy = hy;

var dkq = qy-ky;

var sx = kx + (dkq/Math.cos(Math.

PI/8))*Math.sin(Math.PI/8);

var sy = ay;

var tx = kx; See Figure 7-17

var ty = qy-dist(qx,qy,lx,ly);

var xxa = intersect(sx,sy,qx,qy,kx,

ky,nx,ny);

var xxx = xxa[0];

var xxy = xxa[1];

var xxlx = kx-(xxx-kx);

var xxly = xxy;

var slx = kx- (sx-kx);

(continued)

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

272

Table 7-2.  (continued)

Code Line Description

var sly = sy;

var tlx = tx-5;

var tly = ty;

var dkt=ky-ty;

var finlx = kx-dkt; See Figure 7-18

var finly = ky;

var finrx = kx+dkt;

var finry = ky;

var w = Math.cos(Math.PI/4)*dkt;

var wx = kx-.5*dkt;

var wy = w*Math.sin(Math.PI/4)+ky;

var zx = kx+.5*dkt;

var zy = wy;

var plipx = px;

var plipy = py-10;

var rlipx = rx;

var rlipy = ry-10;

var plipex = px - 10;

var plipey = plipy;

var rlipex = rx + 10;

var rlipey = rlipy;

var rclipcleft1 = proportion(rlipex,r

lipey,rlipx,rlipy,.5);

var pclipcleft1 = proportion(plipex,

plipey,plipx,plipy,.5);

(continued)

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

273

Table 7-2.  (continued)

Code Line Description

var rclipcleft2 = proportion(rlipex,

rlipey,qx,qy,.1);

var pclipcleft2 = proportion(plipex,

plipey,qx,qy,.1);

var rcx1 = rclipcleft1[0];

var rcy1 = rclipcleft1[1];

var rcx2 = rclipcleft2[0];

var rcy2 = rclipcleft2[1];

var pcx1 = pclipcleft1[0];

var pcy1 = pclipcleft1[1];

var pcx2 = pclipcleft2[0];

var pcy2 = pclipcleft2[1];

var v; Will hold video element

var throat1 = new Image(); Define Image object

throat1.src = "throat1.jpg"; Set src

var throat2 = new Image(); Define Image object

throat2.src = "throat2.jpg" Set src

var cleft = new Image(); Define Image object

cleft.src="cleftlip.jpg"; Set src

function showcleftlip() { Header for showcleftlip

 ctx.drawImage(cleft,40,40); Draw image

} Close showcleftlip

function showthroat1() { Header for showthroat1

 ctx.drawImage(throat1,40,40); Draw image

} Close showthroat1

function showthroat2() { Header for showthroat2

(continued)

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

274

Table 7-2.  (continued)

Code Line Description

 ctx.drawImage(throat2,40,40); Draw image

} Close showthroat2

function playtalk() { Header for playtalk

 �v = document.

getElementById("talk");

Set to the talk video

 v.style.display="block"; Make visible

 v.currentTime = 0; Set at start

 v.play(); Play

 canvas1.height = 126; Adjust for height of video

} Close playtalk

function playsink() { Header for playsink

 v = document.getElementById("sink"); Set to the sink video

 v.style.display="block"; Make visible

 v.currentTime = 0; Set at start

 v.play(); Play

 canvas1.height = 178; Adjust for height of video

} Close playsink

function lips() { Header for lips

 ctx.fillStyle = "teal"; Set color

 ctx.beginPath(); Begin path

 ctx.moveTo(finlx,finly); Move to left corner of left fin

 ctx.lineTo(kx,ky); Draw to center

 ctx.lineTo(wx,wy); Draw back and down

 ctx.lineTo(finlx,finly); Draw up to start (left corner, left fin)

 ctx.moveTo(finrx,finry); Move to right fin

(continued)

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

275

Table 7-2.  (continued)

Code Line Description

 ctx.lineTo(kx,ky); Draw to center

 ctx.lineTo(zx,zy); Draw down and right

 ctx.lineTo(finrx,finry); Draw up to right corner, right fin

 ctx.moveTo(mx,my); Move to m

 ctx.lineTo(kx,ky); Draw to k

 ctx.lineTo(xxx,xxy); Draw to xx

 ctx.lineTo(qx,qy); Draw down, center to q

 ctx.lineTo(plipx,plipy); Draw down, right

 ctx.lineTo(mx,my); Draw straight up to m

 ctx.moveTo(xxx,xxy); Move to xx

 ctx.lineTo(nx,ny); Draw right and down

 ctx.lineTo(rlipx,rlipy); Draw down to rlip

 ctx.lineTo(qx,qy); Draw to center q

 ctx.lineTo(xxx,xxy); Draw back to xx

 ctx.closePath(); Close path

 ctx.fill(); Fill in shape

 ctx.stroke(); Outline shape

 ctx.fillStyle="white"; Set to white

 ctx.beginPath(); Begin path

 ctx.moveTo(qx,qy); Start at lower center

 ctx.lineTo(pcx2,pcy2); Draw to left top of lip

 ctx.lineTo(pcx1,pcy1); Draw to left outer lip

 ctx.lineTo(plipx,plipy); Draw over right slightly to bottom-corner plip

 ctx.lineTo(qx,qy); Draw back to center

 ctx.lineTo(rcx2,rcy2); Draw to right top of lip

(continued)

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

276

Table 7-2.  (continued)

Code Line Description

 ctx.lineTo(rcx1,rcy1); Draw to right outer lip

 ctx.lineTo(rlipx,rlipy); Draw to bottom-corner rlip

 ctx.lineTo(qx,qy); Draw back to center

 ctx.closePath(); Close path

 ctx.fill(); Fill in white shape (two parts)

 ctx.stroke(); Outline shapes

 skinnyline(kx,ky,qx,qy); Draw vertical center line

 ctx.fillStyle="teal"; Reset to color

} Close lips

function rotatefish() { Header for rotatefish

 ctx.save(); Save current coordinate system

 ctx.translate(kx,my); Move to a center point

 ctx.rotate(-Math.PI/2); Rotate 90 degrees

 ctx.translate(-kx,-my); Undo translation

 lips(); Draw lips (the model up to this point)

 ctx.restore(); Restore old coordinate system

} Close rotatefish

function preparelips() { Header for preparelips

 ctx.fillStyle="teal"; Set color

 fins(); Draw fins

 valley(qx,qy,rlipx,rlipy); Mark valley line

 valley(qx,qy,plipx,plipy); Mark valley line

} Close preparelips

function finsp() { Header for finsp

 ctx.fillStyle="teal"; Set color

(continued)

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

277

Table 7-2.  (continued)

Code Line Description

 fins(); Draw fins

valley(qx,qy,rlipx,rlipy,"orange"); Draw valley fold

valley(qx,qy,plipx,plipy,"orange"); Draw valley fold

} Close finsp

function fins() { Header for fins

 ctx.beginPath(); Begin path

 ctx.moveTo(finlx,finly); Move to left fin

 ctx.lineTo(kx,ky); Draw line to center

 ctx.lineTo(wx,wy); Draw line left and down

 ctx.lineTo(finlx,finly); Draw to left fin

 ctx.moveTo(finrx,finry); Move to right fin

 ctx.lineTo(kx,ky); Draw to center

 ctx.lineTo(zx,zy); Draw right and down

 ctx.lineTo(finrx,finry); Draw back to right fin

 ctx.moveTo(mx,my); Move to m (left and down)

 ctx.lineTo(kx,ky); Draw to center

 ctx.lineTo(xxx,xxy); Draw to xx

 ctx.lineTo(qx,qy); Draw down to q

 ctx.lineTo(px,py); Draw over to p

 ctx.lineTo(mx,my); Draw left to m

 ctx.moveTo(xxx,xxy); Move to xx

 ctx.lineTo(nx,ny); Draw right to n

 ctx.lineTo(rx,ry); Draw down to r

 ctx.lineTo(qx,qy); Draw up and left to center

 ctx.lineTo(xxx,xxy); Draw to xx

(continued)

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

278

Table 7-2.  (continued)

Code Line Description

 ctx.closePath(); Close path

 ctx.fill(); Fill in shape

 ctx.stroke(); Draw outline

 skinnyline(kx,ky,qx,qy); Draw skinny line indicated center fold

} Close fins

function bothflapsup () { Header for bothflapsup

 ctx.fillStyle="teal"; Set color

 ctx.beginPath(); Begin path

 ctx.moveTo(slx,sly); Move to corner

 ctx.lineTo(tlx,tly); Draw line up to tip

 ctx.lineTo(kx,ky); Draw line to center

 ctx.lineTo(xxlx,xxly); Draw line left and down

 ctx.lineTo(slx,sly); Draw back to tip

 ctx.moveTo(mx,my); Move down (on the left)

 ctx.lineTo(kx,ky); Draw line to center

 ctx.lineTo(sx,sy); Draw to right side

 ctx.lineTo(qx,qy); Draw down, left

 ctx.lineTo(px,py); Draw to bottom, left tip

 ctx.lineTo(mx,my); Draw up

 ctx.moveTo(tx,ty); Draw up

 ctx.lineTo(sx,sy); Draw to right

 ctx.lineTo(kx,ky); Draw to center

 ctx.lineTo(tx,ty); Draw up

 ctx.moveTo(xxx,xxy); Draw to right

 ctx.lineTo(nx,ny); Draw to right

(continued)

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

279

Table 7-2.  (continued)

Code Line Description

 ctx.lineTo(rx,ry); Draw down to tip

 ctx.lineTo(qx,qy); Draw to center

 ctx.lineTo(xxx,xxy); Draw back to right

 ctx.closePath(); Close path

 ctx.fill(); Fill in shape

 ctx.stroke(); Outline shape

 skinnyline(kx,ky,qx,qy); Add line indicating fold

} Close bothflapsup

function oneflapup() { Header for oneflapup

 ctx.fillStyle="teal"; Set color

 ctx.beginPath(); Begin path

 ctx.moveTo(ax,ay); Move to left corner

 ctx.lineTo(kx,ky); Draw to middle

 ctx.lineTo(mx,my); Draw down and left

 ctx.lineTo(ax,ay); Draw back to left corner

 ctx.moveTo(kx,ky); Move to middle

 ctx.lineTo(sx,sy); Draw to right

 ctx.lineTo(qx,qy); Draw down, middle

 ctx.lineTo(px,py); Draw left, down

 ctx.lineTo(mx,my); Draw up

 ctx.lineTo(kx,ky); Draw (back to) middle top

 ctx.moveTo(xxx,xxy); Draw right, down

 ctx.lineTo(nx,ny); Draw down

 ctx.lineTo(rx,ry); Draw down to right tip

 ctx.lineTo(qx,qy); Draw to center

(continued)

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

280

Table 7-2.  (continued)

Code Line Description

 ctx.lineTo(xxx,xxy); Draw right, up

 ctx.moveTo(kx,ky); Move to middle

 ctx.lineTo(tx,ty); Draw to top

 ctx.lineTo(sx,sy); Draw down, right

 ctx.lineTo(kx,ky); Draw (back to) top

 ctx.closePath(); Close path

 ctx.fill(); Fill in shape

 ctx.stroke(); Outline shape

 skinnyline(qx,qy,kx,ky); Draw fold line

} Close oneflapup

function littleguy() { Header for littleguy

 ctx.fillStyle="teal"; Set color

 ctx.beginPath(); Begin path

 ctx.moveTo(ax,ay); Move to left corner

 ctx.lineTo(kx,ky); Draw to center

 ctx.lineTo(mx,my); Draw left, down

 ctx.lineTo(ax,ay); Draw back to corner

 ctx.moveTo(kx,ky); Move to center

 ctx.lineTo(lx,ly); Draw to right corner

 ctx.lineTo(px,py); Draw down and left

 ctx.lineTo(mx,my); Draw up

 ctx.lineTo(kx,ky); Draw back to center

 ctx.moveTo(nx,ny); Move right and down

 ctx.lineTo(rx,ry); Draw down

 ctx.lineTo(qx,qy); Draw to lower center

(continued)

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

281

Table 7-2.  (continued)

Code Line Description

 ctx.lineTo(nx,ny); Draw back, right

 ctx.closePath(); Close path

 ctx.fill(); Fill in shape

 ctx.stroke(); Outline shape

 skinnyline(qx,qy,kx,ky); Draw fold line

 ctx.beginPath(); Begin path

 �ctx.arc(qx,qy,30,-.5*Math.PI,

 -.25*Math.PI,false);

Draw arc to represent angle

 ctx.stroke(); Draw as stroke

 mountain(qx,qy,sx,sy,"orange") Indicate mountain fold

} Close littleguy

function unfolded() { Header for unfolded

 diamond(); Draw diamond shape

 valley(ax,ay,cx,cy); Indicate valley across paper

 valley(ex,ey,gx,gy); Indicate valley, midway, and down on left

 valley(fx,fy,hx,hy); Indicate valley, midway, and down on right

 mountain(ex,ey,gx,gry); Indicate mountain, midway, and up on left

 mountain(fx,fy,hx,gry); Indicate mountain, midway, and up, right

 valley(jx,jy,dx,dy); Valley from inner diamond to bottom

 mountain(jx,jy,bx,by); Mountain from inner diamond to top

 valley(ex,ey,jx,jy+diag6); Valley left, upper side of inner diamond

 valley(jx,jy-diag6,fx,fy); Valley right, lower side of inner diamond

 mountain(ex,ey,jx,jy-diag6); Mountain, left, lower side of inner diamond

 mountain(jx,jy+diag6,fx,fy); Mountain, right, top side of inner diamond

} Close unfolded

(continued)

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

282

Table 7-2.  (continued)

Code Line Description

function precollapse() { Header for precollapse

 diamondc(); Colored diamond

 mountain(ax,ay,cx,cy); Mountain across paper

 valley(ex,ey,gx,gy); Valley center, down on left

 valley(fx,fy,hx,hy); Valley center, down on right

 valley(ex,ey,gx,gry); Valley center, up on left

 valley(fx,fy,hx,gry); Valley center, up on right

 valley(jx,jy-diag6,jx,jy+diag6); Valley in middle of paper, vertical

 mountain(jx,jy-diag6,bx,by); Mountain from inner diamond up

 mountain(jx,jy+diag6,dx,dy); Mountain from inner diamond down

 mountain(ex,ey,jx,jy+diag6); Mountain, bottom, left side of inner diamond

 mountain(jx,jy-diag6,fx,fy); Mountain, top, right side of inner diamond

 mountain(ex,ey,jx,jy-diag6); Mountain, top, left side of inner diamond

 mountain(jx,jy+diag6,fx,fy); Mountain, bottom, right side of inner diamond

} Close precollapse

function changedfolds() { Header for changedfolds; note that this

is the same as unfolded, except for sense

(mountain versus valley) of some folds

 diamond(); Draw diamond

 valley(ax,ay,cx,cy); Valley across paper

 mountain(ex,ey,gx,gy); Mountain, middle of paper, down on left

 mountain(fx,fy,hx,hy); Mountain, middle, down on right

 mountain(ex,ey,gx,gry); Mountain, middle, up on left

 mountain(fx,fy,hx,gry); Mountain, middle, up on right

mountain(jx,jy-diag6,jx,jy+diag6); Mountain, middle, vertical

 valley(jx,jy-diag6,bx,by); Valley, inner diamond up

(continued)

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

283

Table 7-2.  (continued)

Code Line Description

 valley(jx,jy+diag6,dx,dy); Valley, inner diamond down

 valley(ex,ey,jx,jy+diag6); Valley, bottom, left side of inner diamond

 valley(jx,jy-diag6,fx,fy); Valley, top, right side of inner diamond

 valley(ex,ey,jx,jy-diag6); Valley, top, left side of inner diamond

 valley(jx,jy+diag6,fx,fy); Valley, bottom, right side of inner diamond

} Close changefolds

function triangleM() { Header for triangleM

 triangle(); Draw triangle

 shortdownarrow(ex,ey); Indicate with arrow, one-third point

 shortdownarrow(fx,fy); Indicate with arrow, two-thirds point

 valley(ex,ey,gx,gy,"orange"); Next valley fold

 valley(fx,fy,hx,hy,"orange"); Next valley fold

} Close triangleM

function thirds() { Header for thirds

 triangle(); Draw triangle

 skinnyline(ex,ey,gx,gy); Indicate folded line

 skinnyline(fx,fy,hx,hy); Indicate folded line

 curvedarrow(cx,cy,ax,ay,0,-20); Draw curve right to left, offset vertically

 valley(jx,jy,dx,dy,"orange"); Draw (next) valley line

} Close thirds

function cornerdown() { Header for cornerdown

 rttriangle(); Draw right triangle

 ctx.clearRect(ex,ey, diag6+5,diag6); Erase rectangle covering corner

 ctx.beginPath(); Begin path

 ctx.moveTo(ex,ey); Move to start

(continued)

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

284

Table 7-2.  (continued)

Code Line Description

 ctx.lineTo(ex+diag6,ey+diag6); Draw right and down

 ctx.lineTo(ex,ey+diag6); Draw straight down

 ctx.lineTo(ex,ey); Draw back to start

 ctx.closePath(); Close path

 ctx.fill(); Fill in triangle shape

 ctx.stroke(); Outline triangle shape

} Close cornerdown

function showkami() { Header for showkami

 �ctx.strokeRect(kamix,kamiy,

kamiw*i2p,kamih*i2p);

Draw a rectangle

 } Close showkami

function diamond1() { Header for diamond1

 diamond(); Draw diamond

 valley(ax,ay,cx,cy,"orange"); Add orange valley

 curvedarrow(bx,by,dx,dy,10,0); Add vertical curved arrow

} Close diamond1

function diamondc() { Header for diamondc

 ctx.beginPath(); Begin path

 ctx.moveTo(ax,ay); Move to left corner

 ctx.lineTo(bx,by); Line up and right

 ctx.lineTo(cx,cy); Line down and right

 ctx.lineTo(dx,dy); Line down and to middle

 ctx.lineTo(ax,ay) Line to start

 ctx.closePath(); Close path

(continued)

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

285

Table 7-2.  (continued)

Code Line Description

 ctx.fillStyle="teal"; Set color

 ctx.fill(); Fill in diamond

 ctx.stroke(); Draw outline

} Close diamondc

function diamond() { Header for diamond

 ctx.beginPath(); Begin path

 ctx.moveTo(ax,ay); Move to left corner

 ctx.lineTo(bx,by); Draw line up and over

 ctx.lineTo(cx,cy); Draw line down and over

 ctx.lineTo(dx,dy); Draw line down to center

 ctx.lineTo(ax,ay) Draw back to start

 ctx.closePath(); Close path

 ctx.stroke(); Draw outline

} Close diamond

function triangle() { Header for triangle function

 ctx.fillStyle="teal"; Set to color

 ctx.beginPath(); Begin path

 ctx.moveTo(ax,ay); Move to left corner

 ctx.lineTo(cx,cy); Draw line across

 ctx.lineTo(dx,dy); Draw line down

 ctx.lineTo(ax,ay); Draw line back up

 ctx.closePath(); Close path

 ctx.fill(); Fill in shape

 ctx.stroke(); Draw outline

} Close triangle

(continued)

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

286

Table 7-2.  (continued)

Code Line Description

function rttriangle() { Header for rttriangle

 ctx.fillStyle="teal"; Set color

 ctx.beginPath(); Begin path

 ctx.moveTo(ax,ay); Move to left corner

 ctx.lineTo(jx,jy); Draw line across to middle

 ctx.lineTo(dx,dy); Draw line down

 ctx.lineTo(ax,ay); Draw line back up

 ctx.closePath(); Close path

 ctx.fill(); Fill in right triangle

valley(ex,ey,ex+diag6,ey+diag6,"orange"); Draw diagonal valley

 skinnyline(ex,ey,gx,gy); Draw a narrower line between ex, ey and gx, gy

} Close rttriangle

</script> Closing script tag

</head> Closing head tag

<body onLoad="init();"> body, with call to init

<video id="sink" loop="loop"

preload="auto" controls="controls"

width="400">

video tag

<source src="sink.mp4video.mp4"

type='video/mp4; codecs="avc1.42E01E,

mp4a.40.2"'>

MP4

<source src="sink.theora.ogv"

type='video/ogg; codecs="theora,

vorbis"'>

OGG type; note file extension is what I have

<source src="sink.webmvp8.webm"

type='video/webm; codec="vp8,

vorbis"'>

WEBM; note file extension is what I have

(continued)

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

287

Table 7-2.  (continued)

Code Line Description

Your browser does not accept the

video tag.

Message for old browsers

</video> Closing video tag

<video id="talk" loop="loop"

preload="auto" controls="controls">

video tag

<source src="talk.mp4video.mp4"

type='video/mp4; codecs="avc1.42E01E,

mp4a.40.2"'>

MP4 type

<source src="talk.theora.ogv"

type='video/ogg; codecs="theora,

vorbis"'>

OGG type; note the file extension is what I

have

<source src="talk.webmvp8.webm"

type='video/webm; codec="vp8,

vorbis"'>

WEBM type; note the file extension is what I

have

Your browser does not accept the

video tag.

Message for old browsers

</video> Closing video tag

<canvas id="canvas" width="900"

height="480">

Set up canvas

Your browser does not recognize the

canvas element

Message for old browsers

</canvas> Closing canvas tag

 Break

<div id="directions"> Press buttons

to advance or go back </div>

Place to put directions, with closing div tag

<hr/> Horizontal rule

<button onClick="goback();"

style="color: #F00">Go back </button>

Set up Go Back button

(continued)

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

288

Table 7-2.  (continued)

Code Line Description

<button onClick="donext();" style="color:

#03F">Next step </button>

Set up Next Step button

</body> Closing body tag

</html> Closing html tag

You can apply this methodology directly to preparing directions for other origami

models or similar construction projects. However, do think more broadly about other

topics in which line drawings would benefit from mathematical calculations and for

which line drawings and images and videos could be used together. You don’t have

to know everything at the start. Be prepared to work through the project a step

at a time.

�Testing and Uploading the Application
The origamifish.html application can be fully tested on your own computer, assuming

you download the photographs and the video clips. If and when you upload it or your

own application to a server, you’ll need to upload the HTML file, all the image files, and

all the video files. Remember, to have an application work on all browsers, you may need

multiple formats for each video.

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

289

�Summary
In this chapter, you learned how to build a substantial application for presenting

directions involving line drawings, photographs, and video clips. The programming

techniques included the following:

•	 The use of mathematics (algebra, geometry, and trigonometry) to

make precise drawings

•	 The use of an array holding text and function names corresponding

to each step

•	 The integration of photographs and video clips through the use of

functions

In the next chapter, we tackle another project integrating photographs and video

clips: the construction of a jigsaw puzzle that turns into a video when the player puts the

puzzle together.

Chapter 7 Origami Directions:Using Math-Based Line Drawings, Photographs, and Videos

291
© Jeanine Meyer 2018
J. Meyer, HTML5 and JavaScript Projects, https://doi.org/10.1007/978-1-4842-3864-6_8

CHAPTER 8

Jigsaw Video
In this chapter, you will learn the following:

•	 Ways to break up an image into pieces to produce pieces for a

jigsaw puzzle

•	 How to respond to player moves to move pieces around to solve

the puzzle

•	 How to calculate horizontal and vertical coordinates and manipulate

left and top style attributes to reposition elements on the screen

•	 About the concept of tolerance or margin so your player does not

have to be perfect to solve the puzzle

•	 How to make the completed jigsaw appear to turn into a

running video

�Introduction
The project for this chapter is a jigsaw puzzle that becomes a video when complete. It

has been tested on Chrome, Firefox, Opera, and Safari on computers equipped with a

mouse. The jigsaw pieces are positioned randomly on the screen each time the program

is loaded or the button is clicked to restart the program. Figure 8-1 shows an opening

screen when the program is run on a desktop computer running the Firefox browser.

292

On a computer, the player uses the mouse to move and reposition pieces. Randomly

positioned pieces may end up on top of each other. Figure 8-2 shows the jigsaw pieces

spread out. I did this using the mouse. My example has six rectangular-shaped pieces.

Figure 8-1.  Opening screen on computer

Chapter 8 Jigsaw Video

293

Figure 8-3 shows how I made progress in putting the puzzle together. I can position

the puzzle anywhere on the screen. Three pieces of the puzzle have been put together.

Figure 8-2.  Pieces spread out

Figure 8-3.  Progress made on the puzzle

Chapter 8 Jigsaw Video

294

Notice that the box with the label Feedback says to keep working. Figure 8-4 shows

the puzzle nearly complete.

Figure 8-4.  Just one piece left to fit into the jigsaw puzzle

The program allows for a margin of error, which I term the tolerance, when putting

the pieces together. You can see by noticing the white gaps that the puzzle is not perfectly

put together. When I move in the last piece, Figure 8-5 shows a screen capture shortly

after my last move.

Chapter 8 Jigsaw Video

295

Notice that the feedback now reads “GOOD!” A video has begun to play and I

stopped it and reset to the start to obtain this screenshot. The picture appears perfect.

In fact, the six jigsaw pieces have been replaced by the video. Figure 8-6 shows the video

with controls showing. The controls do not show automatically, but can be seen if the

player puts the mouse on top of the lower part of the video. The video controls vary

across the different browsers.

Figure 8-5.  Pieces replaced by a video

Chapter 8 Jigsaw Video

296

I decided to take the challenge of making the project work for an iPhone, iPad, and

Android phone. This meant constructing a user interface that allows the player to use

finger touches. To be more precise and demonstrate my ambitions, I wanted to produce

one program as a website that would work for both mouse and touch. I will postpone

the explanation on how to respond to touch until Chapter 10, “Responsive Design and

Accessibility”. In this chapter, I address the issue of modifying the program to work with

windows of different dimensions. This can be checked out on a desktop by changing the

width and/or height of the window.

Note that the Apple operating systems on mobile devices may require users to click

the Play button to start all videos. This is considered a feature, not a bug, by Apple.

Requiring a click does give the owners of the devices a chance to prevent downloading

of a video, which takes time and battery power and may incur fees. For the jigsaw-to-

video project, I would prefer it to be seamless and that is what it is on a desktop or laptop

computer. The program does exhibit seamless behavior using Chrome on my Mac

desktop, so the autoplay policy discussed in Chapter 2 appears to be satisfied.

With this introduction to what can be called the jigsaw-puzzle-with-video-reward

project, we can go on to discuss the requirements for the project and the implementation.

Figure 8-6.  Video clip with controls

Chapter 8 Jigsaw Video

297

�Background and Critical Requirements
Three distinct circumstances inspired me to want to build this particular project.

I had built jigsaw puzzles turning into videos in Adobe Flash for a Programming Games

course that I taught, and many students were happy to use them as models for their own

projects. When I was working on a US states educational game, which is the subject of

Chapter 9, I decided a jigsaw activity to put the states together was a good addition to

other questions such as asking the player to identify a state by clicking on the state in

a map of the whole USA. Lastly, I frequently receive videos of family members and so

shameless incorporated them into my teaching examples. These circumstances were the

motivation to create the jigsaw turning into video project.

The requirements for this project start with the challenge of creating the jigsaw

pieces. One approach is to create—cut up—the base picture outside of this program. If

you do this, you must record the relative locations of each jigsaw piece. You can make the

pieces more irregular than in this example. See the “How to Build the Application and

Make It Your Own” section for ideas. I describe a different approach here. My program

cuts up the base picture. The pieces are the same rectangular shape.

After making the adjustments to fit the window, the main technical requirement is to

build the user interface. The user interface consists of the mouse or finger touch actions

to move individual pieces, along with a button to do the jigsaw again and feedback

provided in a text field.

The program presents the pieces randomly positioned on the screen. The player

then moves pieces to construct the image. After each release of a piece, the program

performs a calculation to see if the puzzle has been solved. This calculation must

satisfy two requirements. The puzzle can be put together anywhere on the screen so the

calculations must be done in terms of relative positions. Secondly, there needs to be a

tolerance in the positioning of the pieces, since we can’t require the positioning to be

perfect (i.e., to the pixel).

When the puzzle is deemed complete, it turns into a video. More accurately, a video

appears where the pieces were located on the screen.

�HTML5, CSS, JavaScript, and Programming Features
The features used for the jigsaw video project are a mixture of HTML5 constructs and

general programming techniques.

Chapter 8 Jigsaw Video

298

�Creating the Base Picture
The first step is to create an image file from the first frame of the video. How you do this

depends on the tools you have and what you feel comfortable using. I used the Grab

tool on my Mac. Other possibilities are pressing the PC Print Screen key twice to capture

the screen, or pressing Command+Shift+4 to get crosshairs on the Mac. There also is

SnagIt. If you have a video editing tool, you can access the first frame using the tool. An

alternative is to have the jigsaw picture be independent of the video. This would never

have occurred to me, but someone did suggest it.

�Dynamically Created Elements
In Chapter 2, you read about the Family Collage project, in which images were

repositioned on a canvas. I take a somewhat different approach here. Each piece will be

its own canvas element, with the markup created dynamically and sections of the base

image drawn on each canvas. The pieces are created in a function called makePieces

invoked by the init function. The game is set up using a function called setupGame,

also invoked from init. The fact that I have three functions—init, makePieces and

setupGame—is partially an artifact of the history of this project. I reused code created for

the US states game, in which the jigsaw puzzle was just a part. However, breaking up a

function into smaller pieces generally is a good thing to do. The init function does some

work, calls makePieces, does some more work, and then calls setupGame. The setupGame

function is also invoked from endjigsaw so the player can play the game again. Often, I

am too lazy to allow a player to play again because this can be challenging. What needs

to be reset and what doesn't? However, I decided to make the effort in this case. The

pieces are not re-created but are positioned randomly once again in the window. The

way I created this application is not the only way it could be done. In some situations,

here and in other chapters, I chose to write a function that is more general than needed,

and in others I did not.

The base image (img) and the video elements are each specified in the HTML body.

Directives in the style element make each of these invisible. The base img is never made

visible, but its contents are used to build the pieces. The init function is invoked by the

action of an onload attribute in the body tag. This means that game play will not start

until the base image file and the video files are loaded. The init function does some

housekeeping tasks of obtaining references to elements and invokes the makePieces and

the setupGame functions.

Chapter 8 Jigsaw Video

299

The makePieces does the task of determining the adjustments required to fit the

window dimensions. It then virtually cuts up the jigsaw pieces. To adjust the pieces and

the video to different windows and preserve the proportions, I need to determine the

relationship of the base image and the window. I decided I wanted the base width to be

no more than 80% of the window.innerWidth and the base height to be no more than

80% of the window.innerHeight. I also did not want the base to be grow in size if the

width and height was less than those amounts. The following statements produce in the

variable ratio, the critical factor:

origW = base.width;

origH = base.height;

var ratio =Math.min(1.0,.80*window.innerWidth/origW,.80*window.

innerHeight/origH);

You can think it out this way: if the origW value is bigger than .80*window.

innerWidth, it means that my code needs to shrink the picture. In this case, the second

parameter to the Math.min function will be less than 1. The same can be said regarding

height. Whichever factor is the least gets assigned to the ratio variable. If both of these

factors are greater than 1, then ratio is set to 1 and the pieces and the video are not

increased in size. If one of these factors is less than one, then ratio will be set to less

than 1. The following statements use ratio to set the critical variables. The invocation

of the drawImage function will use opieceW, opieceH, pieceW, and pieceH to create the

jigsaw pieces from the original base. The jigsaw pieces and the video may be changed

from the original dimensions.

baseImgW = origW*ratio; //possibly modified

baseImgH = origH*ratio; //possibly modified

v.width = baseImgW; //possibly modified video width

v.height =baseImgH; //possibly modified video height

opieceW = origW/numOfCols; //width of the source for a jigsaw piece

opieceH = origH/numOfRows; //height of the source for a jigsaw piece

pieceW = ratio*opieceW; //jigsaw piece width

pieceH = ratio*opieceH; //jigsaw piece height

The makePieces function invokes drawImage to extract and scale pieces of the base

image to be drawn, each into its own newly created canvas element. This operation takes

place within nested for loops. The base image is divided into numOfRows and numOfCols.

The pieces, that is, references to the canvas elements and the x value and the y values are

Chapter 8 Jigsaw Video

300

each stored in the arrays pieces, piecesx and piecesy. Think of the drawImage method

as performing the jigsaw operation, although it is more complicated because scaling

takes place:

for(i=0.0; i<numOfRows; i++) {

 for (j=0.0; j<numOfCols; j++) {

//Some other tasks

sCTX.drawImage(base, j*opieceW, i*opieceH, opieceW, opieceH, 0, 0, pieceW,

pieceH);

//Some other tasks

 }

}

The base image has not been changed. The sCTX is the context for the canvas created

for each piece. The drawImage function extracts—clips—a section of the base image

starting at j*opieceW and i*opieceW and opieceW wide and opieceH high. It draws this

piece of the image into the sCTX canvas element, scaling it to be pieceW and pieceH. This

takes up the whole canvas.

You can examine the complete code in Table 8-2. The canvas pieces are made visible

by appending them to the body element and also setting the style attribute visibility to

visible. The addEventListener method for each canvas element sets up the response

to mousedown for each canvas. The code arranges the pieces so that they resemble the

original picture, the first frame of the video clip. However, the setupGame function is

invoked soon afterward so the player will not see the puzzle solution. After the nested

for loops, another initialization is performed. The firstpkel variable points to the

newly created element holding the first piece, the piece in the top-left corner. This is the

reference point the code uses to position the video clip. The calculation that positions the

pieces correctly in relation to each other is independent of the location of the first piece.

�Setting Up the Game
The work of setting up the jigsaw puzzle starts with stopping the video and making it not

display. This isn’t necessary the very first time, but it is easier to have the code always

perform these operations. The next task is to place the pieces randomly on the screen.

The code does this using Math.random and Math.floor. The display attribute is set to

inline to make the pieces visible, but not with a line break, which would be the case

Chapter 8 Jigsaw Video

301

if the code used block. When the circumstances occur to play the video, all the pieces

are made invisible by setting the display to none, so this code is necessary. Note that the

variable v has been set in the init function to point to the video element.

function setupGame() {

 var i;

 var x;

 var y;

 var thingelem;

 v.pause();

 v.style.display = "none";

 doingjigsaw = true;

 for (i=0;i<nums;i++) {

 x = 10+Math.floor(Math.random()*baseImgW*.9);

 y = 50+Math.floor(Math.random()*baseImgH*.9);

 thingelem = pieces[i];

 thingelem.style.top = String(y)+"px";

 thingelem.style.left = String(x)+"px";

 thingelem.style.visibility='visible';

 thingelem.style.display="inline";

 }

 questionfel.feedback.value = " ";

}

Note I f you notice that a certain amount of complexity occurs in the coding
to handle the issue of replaying the jigsaw game, this is typical. Restarting,
reinitializing, and so on are more of a challenge than programming something to
happen just once.

�Handling Player Actions
My approach was to implement the mouse events first and get those working. Then, when

my ambitions rose to build an application for certain family members who use iPhones

and iPads, I implemented the finger touch by making a touch event simulate a mouse

event. I explain the mouse events in this chapter and the coding for touch in Chapter 10.

Chapter 8 Jigsaw Video

302

�Using Mouse Events

The tasks for moving the jigsaw pieces are to

•	 Recognize that the mouse button is down and the mouse is on top of

a piece

•	 Move the piece when the mouse moves, adjusting the location to

make sure that the piece doesn’t jump, but remains as if the cursor

were attached to its original position, perhaps in the middle of the

element.

•	 Release or drop the element when the player has released the mouse

button.

You may recall similar operations in Chapter 2. This reasoning suggests that my code

will set up at least three events, and this is what happens. In the makePieces function, the

following statement is executed in the nested for loops that create a canvas element for

each piece. The variable s holds the reference to the canvas element.

s.addEventListener('mousedown',startdragging);

This sets up event handling for mousedown for each piece. The startdragging

function sets a variable named movingobj to be the event target, which is the specific

jigsaw piece. The function also sets the global variables oldx and oldy to the position of

the mouse. The function sets up event handling for mousemove and mouseup.

movingobj.addEventListener("mousemove",moving);

movingobj.addEventListener("mouseup",release);

Notice that nothing happens if the mouse is not over a piece when the player presses

down on the mouse button because the only events “listened to” are events over the

canvas elements. The moving function is:

function moving(ev)

{

 if((movingobj!=null) &&(mouseDown)){

 newx = parseInt(ev.pageX);

 newy = parseInt(ev.pageY);

 delx = newx-oldx;

 dely = newy-oldy;

Chapter 8 Jigsaw Video

303

 oldx = newx;

 oldy = newy;

 curx = parseInt(movingobj.style.left);

 cury = parseInt(movingobj.style.top);

 movingobj.style.left = String(curx+delx)+"px";

 movingobj.style.top = String(cury+dely)+"px";

 }

};

Checking that movingobj is not null and mouseDown is true is redundant, but I

decided to keep it just in case I want to add something in the future. The moving function

performs a relative move of movingobj. The moving jigsaw piece is moved by the same

amount horizontally and vertically as the mouse is moved. It does not matter where on

the piece canvas the mouse is positioned. Whatever the changes from the last time that

the mousemove event has occurred, the piece canvas is adjusted using the same changes.

The release function is invoked when the player releases the mouse button. I

handled a failure of release to be invoked when one piece is on top of another by setting

up another event:

 document.body.onmouseup = release;

There is no problem with invoking release multiple times.

function release(e){

 mouseDown = false;

 movingobj = e.target;

 movingobj.removeEventListener("mousemove",moving);

 movingobj.removeEventListener("mouseup",release);

 movingobj=null;

 checkpositions();

}

Changing the variable mouseDown to false means that nothing will happen if and

when the player moves the mouse until the player presses down on the mouse button

again, invoking the startdragging function. This completes the mouse event handling.

The checkpositions function is explained in the next section.

Chapter 8 Jigsaw Video

304

�Calculating If the Puzzle Is Complete
Recall that I set the requirements for calculating if the puzzle is complete to be that

the puzzle can be located anywhere on the screen and that the player does not have

to be precise. Another more-or-less implicit requirement is that the checking be done

automatically. After the player releases the mouse or lifts his or her finger, the release

function invokes checkpositions. The checkpositions function is called after each

move. Don’t worry, JavaScript is doing the work, not you.

The checkpositions function computes the difference between the piecesx value

and the style.left value of each piece element, and the difference between the

piecesy value and the style.top value of each piece element. The style.left and

style.top values are character strings, not numbers, and include "px". The code needs

to remove the "px", which stands for “pixels,” and calculate the numeric value. The

differences are stored in the arrays deltax and deltay.

The function calculates the average of these differences (one for x and one for y). If

the puzzle were put together exactly according to the values in the piecesx and piecesy

arrays, the differences would each be zero, and consequently, the averages for x and for y

would each be 0. If the puzzle were put together such that the actual locations were each

100 pixels closer to the left side—that is, more left and 50 pixels further down the page, that

is higher value y, then the averages would be 100 and 50. The puzzle would be put together

perfectly, but at a location to the left and below the original location. The differences for x

for all pieces would be 100 and the differences for y for all pieces would be 50. Each of the

differences would have the same value as the corresponding (x or y) average.

The goal is to not require perfection. The tasks of the checkpositions function are to

compute the differences in x and y, compute the two averages, and check if each of the

differences is close enough to the average.

After computing the difference values, the function performs these tasks by iterating

over each piece to compare it with the corresponding average. The check is done using

absolute values, because our code doesn’t care if a piece is a few pixels left or right or up

or down. The criteria for being close enough is the value held in the variable tolerance.

If the gap is bigger than tolerance for any piece, the puzzle is not considered complete.

The critical if test is

if ((Math.abs(averagex - deltax[i])>tolerance) || (Math.abs(averagey-

deltay[i])>tolerance)) {

 break;

 }

Chapter 8 Jigsaw Video

305

The doaverage function computes and returns the average value of numbers in an

array. This is accomplished in the usual way. The variable sum is called an accumulator.

It is initialized to 0. A for loop iterates over the elements in the array, adding each one to

the variable sum.

function doaverage(arr) {

 var sum;

 var i;

 var n = arr.length;

 sum = 0;

 for(i=0;i<n;i++) {

 sum += arr[i];

 }

 return (sum/n);

}

To summarize the action a different way, the checkpositions function uses the

first for loop to determine the differences in current horizontal and vertical position

of each piece. It then computes two averages: for x and for y. Then the function uses a

second for loop to see if the horizontal or vertical difference for any piece is significantly

different in absolute value from the relevant average. As soon as this happens, control

leaves the for loop and the puzzle is deemed not complete. If the loop has completed,

the puzzle is complete and the video is positioned and played. The checkpositions

function is shown in Table 8-2. I chose to display a message to the player giving feedback

on the puzzle. The form element questionfel holds a reference to the form, and

feedback is an input field.

I will describe what happens when the puzzle is deemed complete in the next

section.

�Preparing, Positioning, and Playing the Video and Making
It Hidden or Visible
Preparing the video clip is the same as what you have seen for the other projects

involving video. You need to create multiple encodings of the video. Also, as with the

other projects, when we do not want the video to appear until a certain situation occurs,

the style section contains the directive to make the video initially not visible, set it up

Chapter 8 Jigsaw Video

306

to be positioned absolutely, and (when it is displayed) put it in the window at the same

location as firstpkel, the upper-left corner piece. The relevant code is

 v.style.left = firstpkel.style.left;

 v.style.top = firstpkel.style.top;

 v.style.display="block";

 v.currentTime = 0;

 v.play();

The video may demonstrate different behavior in different circumstances. Specifically,

on an iPad or iPhone, the player may need to click an arrow to play the video. On my

desktop (and I am using an iMac) using Chrome or Firefox and on an Android phone, the

video starts automatically, which is what I prefer. In Chapter 2, I discussed the issue of the

autoplay policy. I have not muted the monkey bars video. It may be that the calculation

performed in Chrome for media engagement index (see https://developers.google.

com/web/updates/2017/09/autoplay-policy-changes) produces these results.

You have seen several HTML5 features to use, as well as programming tricks you can

use in other applications. The next section shows you the bulk of the code for the project.

The entire program is stored with the source code. I include the program for the same

application, but using touch, with the source code for Chapter 10.

�Building the Application and Making It Your Own
You can make these projects your own by using your own video clip. You also can make

a jigsaw puzzle by itself, though you probably should wait to read the next chapter,

which describes a more elaborate jigsaw puzzle and contains pointers on how to cut

up more intricate shapes. If the pieces have transparent areas, you still would set up the

mousedown event for the whole canvas element. But, you would then code a check if the

pixel “under” the mouse is or is not transparent.

Another approach to jigsaw puzzles is to check if a piece is close enough to another

piece, using some tolerance or margin calculation, and snap them together. Your code

must then move the snapped together pieces together.

You may decide to omit or change the feedback of Keep working or Good. My

implementation has the Do Jigsaw Again button and the feedback box on top of pieces

but under the video clip. This means that if the player chooses to create the puzzle so

that the do over button is hidden, there is no way except re-loading to start again.

Chapter 8 Jigsaw Video

https://developers.google.com/web/updates/2017/09/autoplay-policy-changes
https://developers.google.com/web/updates/2017/09/autoplay-policy-changes

307

Here is an informal summary/outline of the jigsaw-to-video project:

•	 init: For initialization, including invoking calls to setupGame and

setupjigsaw.

•	 makePieces: For creating the pieces.

•	 setupGame: For randomly positioning the pieces and setting up event

handling.

•	 endjigsaw: For stopping the video and making it not display and

then invoking setupGame for a new game.

•	 startdragging, moving, release: For handling events.

•	 checkpositions: For determining if the puzzle is complete.

•	 doaverage: For calculating the average of values in an array.

Table 8-1 lists all the functions and indicates how they are invoked and what

functions they invoke.

Table 8-1.  Functions in the Jigsaw-to-Video Project

Function Invoked/Called By Calls

init Invoked by action of the onLoad attribute in

the <body> tag

makePieces, setupGame

makePieces Invoked by init

setupGame Invoked by init and endjigsaw

endjigsaw Invoked by the onSubmit setting in the form

in the body

setupGame

checkpositions Invoked by release doaverage

doaverage Invoked by checkpositions

startdragging Invoked by event setting in makePieces

moving Invoked by event setting in startdragging

release Invoked by event setting in startdragging

for individual pieces and makePieces

for the body

checkpositions

Chapter 8 Jigsaw Video

308

Table 8-2 shows the code for the basic application, with comments for each line.

Much of this code you have seen in the previous chapters.

Table 8-2.  Complete Code for the Jigsaw-to-Video Project

<!DOCTYPE html> Header

<html> html tag

 <meta charset="UTF-8"> Specific character set

<head> head tag

 <title>Jigsaw Monkey bars title for tab

 </title> Closing title tag

<style> Style tag

#base {position:absolute;

border:none; visibility: hidden;}

Make base image start out hidden, absolute

positioning

form {position: absolute;

z-index: 10;}

Put form on top of pieces

body { height:100%; margin: 30px;} Format for body

video {display:none; position:

absolute; z-index: 100;}

Make video start out not displayed; places on

top of pieces

</style> Close style

<script type="text/javascript"> script tag

var pieces = []; Will hold pieces

var nums; Will hold number of pieces

var baseImgW; Will hold adjusted width of base image

var baseImgH; Will hold adjusted height of base image

var origW; Original width of base

var origH; Original height of base

var opieceW; Calculated width of a piece in terms of base

image

var opieceH; Calculated height of a piece in terms of base

image

(continued)

Chapter 8 Jigsaw Video

309

Table 8-2.  (continued)

var pieceW; Width of a piece; result of scaling operation

var pieceH; Height of a piece; result of scaling operation

var numOfRows = 2.0; Number of rows

var numOfCols = 3.0; Number of columns

var piecesx = []; Will hold original x coordinate for all pieces

var piecesy = []; Will hold original y coordinate for all pieces

var v; Will hold reference to video element

var base; Will hold reference to base img

var doingjigsaw = false; Flag for when jigsaw is in play

var firstpkel; First piece, located in upper-left corner

var oldx; Will hold previous x coordinate of moving item

var oldy; Will hold previous y coordinate of moving item

var questionfel; Reference to question (status) element

var mouseDown = false; Flag indicating a piece is being dragged

var movingobj; Will hold reference to current moving piece

function init(){ Header for init

 v = document.getElementById("bars"); Get reference to video

 �base = document.

getElementById("base");

Get reference to base image

 makePieces(); Invoke makePieces

 nums = pieces.length; The pieces array is now set and populated and

so can store the length

 �questionfel = document.getElement

ById("questionform");

Reference to place to display form holding do

over button and feedback

 questionfel.style.left = "20px"; Location of form

 questionfel.style.top = "600px"; Location of form

 questionfel.submitbut.value =

"Do jigsaw again.";

Label on the form submit button

(continued)

Chapter 8 Jigsaw Video

310

Table 8-2.  (continued)

 setupGame(); Invoke function to set up puzzle, mainly

randomly placing pieces

} Close init

function makePieces() { Header for makePieces function

 var i; Indexing variable

 var x; Will hold horizontal coordinate

 var y; Will hold vertical coordinate

 var s; Will hold reference to each dynamically created

canvas element for holding a piece

 var sCTX; Context for canvas elements

 origW = base.width; Width of base image

 origH = base.height; Height of base image

 �var ratio =Math.min(1.0,.80*

window.innerWidth/origW,.80*window.

innerHeight/origH);

Computes the required scaling factor

 baseImgW = origW*ratio; Scaled width

 baseImgH = origH*ratio; Scaled height

 v.width = baseImgW; Set width of video after scaling

 v.height =baseImgH; Set height of video after scaling

 opieceW = origW/numOfCols; Compute the width of the portion of the base

image to be scaled and drawn on each canvas

element

 opieceH = origH/numOfRows; Compute the height

 pieceW = ratio*opieceW; Compute the actual width of each canvas piece

 pieceH = ratio*opieceH; Compute the actual height

 for(i=0.0;i<numOfRows;i++) { for loop going through the rows

 for (j=0.0;j<numOfCols;j++) { for loop, within a row, going through the

columns

(continued)

Chapter 8 Jigsaw Video

311

Table 8-2.  (continued)

 �s = document.

createElement('canvas');

Create a canvas

 s.width = pieceW; Set its width

 s.height = pieceH; Set its height

 s.style.position = 'absolute'; Set position style

 sCTX = s.getContext('2d'); Set context

 �sCTX.drawImage(base,j*opieceW,

i*opieceH,opieceW,opieceH,0,0,piec

eW,pieceH);

Cut out of the base image the section to be

scaled and drawn to the canvas

 document.body.appendChild(s); Make visible by appending to the body

 pieces.push(s); Add to the pieces array

 x = j*pieceW +100; Set a temporary x value; think of this as the

nominal correct x

 y = i*pieceH +100; Set a temporary y value; think of this as the

nominal correct y

 s.style.top = String(y)+"px"; Set the top of this canvas element

 s.style.left = String(x)+"px"; Set the left of this canvas element

 piecesx.push(x); Add value to piecesx for later use in

checkposition

 piecesy.push(y); Add value to piecesy for later use in

checkpositions

 �s.addEventListener

('mousedown',startdragging);

Set up event handling for a mousedown on this

element; Note this is never removed

 s.style.visibility='visible'; Make visible

 } Close inner for

 } Close outer for

 firstpkel = pieces[0]; Set reference to the very first piece

(continued)

Chapter 8 Jigsaw Video

312

Table 8-2.  (continued)

 document.body.onmouseup = release; Makes sure release is invoked for situation

when pieces are on top of each other

} Close makePieces

function endjigsaw() { Header for endjigsaw; this is end and then

re-start

 if (doingjigsaw) { If jigsaw is being done

 doingjigsaw = false; Set doingjigsaw to false

 v.pause(); Pause video

 v.style.display = "none"; Make video not display

 } Close if true clause

 setupGame(); Re-start game

 return false; Prevents page refresh

} Close endjigsaw

function checkpositions() { Header checkpositions

 var i; Indexing variables, used in for loop

 var x; Will hold horizontal value

 var y; Will hold vertical value

 var tolerance = 10; Set margin for checking

 var deltax = []; Will hold differences from nominal x position

 var deltay = []; Will hold differences from nominal y position

 var delx; Used in calculation for x values

 var dely; Used in calculation for y values

 for (i=0;i<nums;i++) { for loop, to determine horizontal and vertical

differences

 x = pieces[i].style.left; Get the left style

 y = pieces[i].style.top; Get the top style

 x = x.substr(0,x.length-2); Remove px

(continued)

Chapter 8 Jigsaw Video

313

Table 8-2.  (continued)

 y = y.substr(0,y.length-2); Remove px

 x = Number(x); Convert to number

 y = Number(y); Convert to number

 delx = x - piecesx[i]; Calculate difference

 dely = y - piecesy[i]; Calculate difference

 deltax.push(delx); Add to array

 deltay.push(dely); Add to array

 } End for loop

 var averagex = doaverage(deltax); Calculate average horizontal difference

 var averagey = doaverage(deltay); Calculate average vertical difference

 for (i=0;i<nums;i++) { for loop to check if any delta (x or y) is more

than tolerance from average

 �if ((Math.abs(averagex -

deltax[i])>tolerance)

|| (Math.abs(averagey-

deltay[i])>tolerance)) {

Do comparisons (taking absolute values)

 break; If true, leave loop

 } Close if true clause

 } Close for loop

 if (i<nums) { Look at last I; if this is less than nums, then

there was a deltax or deltay that was

bigger than tolerance

 �questionfel.feedback.value =

"Keep working.";

Display message

 } Close if true

 else { Else

 �questionfel.feedback.value =

"GOOD!";

Display message

(continued)

Chapter 8 Jigsaw Video

314

Table 8-2.  (continued)

 for (i=0;i<nums;i++) { for loop to make all pieces not be displayed

 �pieces[i].style.display =

"none";

Make display none

 } Close for loop

 �v.style.left = firstpkel.style.

left;

Position video horizontally

 �v.style.top = firstpkel.style.

top;

… and vertically

 v.style.display="block"; Make video display

 v.currentTime = 0; Set video at start

 v.play(); Play video

 } Close else

} Close function

function doaverage(arr) { Header for doaverage

 var sum; Will hold sum

 var i; Indexing variable

 var n = arr.length; Store length

 sum = 0; Initialize sum

 for(i=0;i<n;i++) { for loop going through items in arr

 sum += arr[i]; Add to sum

 } Close for

 return (sum/n); Return calculated average

} Close doaverage

function setupGame() { Header for setupGame

 v.pause(); Pause the video; no action or error if video not

being played

 v.style.display = "none"; Make video not display

 doingjigsaw = true; Set flag to true

(continued)

Chapter 8 Jigsaw Video

315

Table 8-2.  (continued)

 var i; Indexing variable

 var x; Will hold horizontal value

 var y; Will hold vertical value

 var thingelem; Will hold reference to pieces (canvases for

pieces)

 for (i=0;i<nums;i++) { Loop through all the pieces

 �x = 10+Math.floor(Math.

random()*baseImgW*.9);

Set random value for horizontal position

 �y = 50+Math.floor(Math.

random()*baseImgH*.9);

Set random value for vertical position

 thingelem = pieces[i]; Get the ith piece

 �thingelem.style.top =

String(y)+"px";

Set the top

 �thingelem.style.left =

String(x)+"px";

Set the left

 �thingelem.style.

visibility='visible';

Make visible

 �thingelem.style.

display="inline";

Set display

 } Close for loop

 questionfel.feedback.value = " "; Erase any previous feedback

} Close setupGame function

function release(e){ Header for release

 movingobj = e.target; Set to piece released

 mouseDown = false; Set flag to false

 �movingobj.removeEventListener

("mousemove",moving);

Stop listening for mouse move

(continued)

Chapter 8 Jigsaw Video

316

Table 8-2.  (continued)

 �movingobj.removeEventListener

("mouseup",release);

Stop listening for mouse up.

 movingobj=null; Set this variable to null

 checkpositions(); Invoke checkpositions

} Close release function

function startdragging(e) { Header for startdragging

 movingobj = e.target; Store the event target; this is the piece being

dragged

 mouseDown = true; Set flag to true

 oldx = parseInt(e.pageX); Store current horizontal value of mouse

 oldy = parseInt(e.pageY); Store current vertical value of mouse

 movingobj.addEventListener

("mousemove",moving);

Set up listening for mousemove

 �movingobj.addEventListener

("mouseup",release);

Set up listening for mouseuup

} Close startdragging

function moving(ev) { Header for moving

 �if((movingobj!=null)

&&(mouseDown)){

Only do anything if movingobj is defined and

mouseDown is true; this is redundant, but may

ease later enhancements

 newx = parseInt(ev.pageX); Extract horizontal mouse position

 newy = parseInt(ev.pageY); Extract vertical mouse position

 delx = newx-oldx; Calculate change (delta) from last value stored

in oldx

 dely = newy-oldy; Calculate change (delta) from last value stored

in oldy

 oldx = newx; Now, store newx in oldx

(continued)

Chapter 8 Jigsaw Video

317

Table 8-2.  (continued)

 oldy = newy; … store newy in oldy

 �curx = parseInt(movingobj.style.

left);

Extract the number from the style.left for

this element

 �cury = parseInt(movingobj.style.

top);

Extract the number from the style.top for

this element

 �movingobj.style.left =

String(curx+delx)+"px";

Reset the style.left using the calculated

values and concatenate "px"

 �movingobj.style.top =

String(cury+dely)+"px";

Reset the style.top using the calculated

values and concatenate "px"

 } Close if

 } Close moving function

</script> Ending script tag

</head> Ending head tag

<body id="body" onLoad="init();"> Body tag; note onload attribute

<h2> Monkey bars</h2> Title displayed

<form id="questionform"

name="questionform" onSubmit="return

endjigsaw();" >

Form for submit button to end and re-start and

for feedback

<input name="submitbut" type="submit"

value=" " size="30"/>

Submit button

Feedback: <input name="feedback"

value=" " size="11" />

Feedback field

</form> Close form

<video id="bars" controls="controls"

preload="auto" width="800">

Video element; put in body so it will be loaded

before any action taken

 <source src="monkeybars.mp4" > Type of video

 <source src="monkeybars.webm" > Type of video

 <source src="monkeybars.ogv" > Type of video

(continued)

Chapter 8 Jigsaw Video

318

Table 8-2.  (continued)

Your browser does not accept the

video tag.

Note for old browsers

</video> Close video element

<img src="barsbase.png" id="base"

width="800px" height="420px"/>

The img for the base image; t is never shown

</body> Close body

</html> Close html

�Testing and Uploading the Application
Testing the application requires the video files and the image file for the base image to

be in the same folder as the HTML document. You can test the adaptability to different

window dimensions by changing the window and reloading.

�Summary
In this chapter, you learned how to build a jigsaw puzzle that turns into a video clip.

The techniques included the following:

•	 Adapting to different screen dimensions while keeping the jigsaw

pieces and the video in proportion.

•	 Forming the jigsaw pieces by dynamically creating HTML elements

and setting the HTML markup.

•	 Defining event handling for mouse events.

•	 Placing the jigsaw pieces randomly on the screen at the start of a

game and then moving the elements in the response to movement of

the mouse.

Chapter 8 Jigsaw Video

319

•	 Producing the code to check if the jigsaw puzzle is complete, within a

tolerance.

•	 When appropriate, making the video appear and play.

In the next chapter, we tackle another project that includes a jigsaw puzzle, along

with other possible moves by the player. Because a jigsaw puzzle such as my set of the 50

states is challenging, I explain a way to store the puzzle as a work-in-progress using the

localStorage feature of HTML5.

Chapter 8 Jigsaw Video

321
© Jeanine Meyer 2018
J. Meyer, HTML5 and JavaScript Projects, https://doi.org/10.1007/978-1-4842-3864-6_9

CHAPTER 9

US States Game: Building
a Multiactivity Game
In this chapter, you will learn the following:

•	 How to build a user interface for a game involving different types of

player moves, including putting together a jigsaw puzzle

•	 How to use the mouse to reposition pieces

•	 How to acquire an image, break it up into pieces, and determine the

coordinates for those pieces to produce a jigsaw puzzle

•	 How to encode and retrieve the current state of the jigsaw game

•	 How to use localStorage to store and retrieve the information,

including using try and catch for situations when localStorage is

not allowed

�Introduction
The project for this chapter is an educational game in which the player/student clicks

a state on a map of the United States in response to a text prompt, names a state that is

indicated by a border by typing in the name, or puts the states that have been randomly

positioned on the screen all together again. Figure 9-1 shows the opening screen.

322

Figure 9-1.  Opening screen of the US states game

Chapter 9 US States Game: Building a Multiactivity Game

323

I follow the common practice and present a map with Alaska and Hawaii not in

correct position nor proportionally sized. Note also that Rhode Island is bigger than it

really is so there’s enough room to click it. The game presents the player with different

possibilities. Figure 9-2 shows the result of clicking the Find the State button.

Figure 9-2.  The prompt is to find Washington

Chapter 9 US States Game: Building a Multiactivity Game

324

When I clicked Oregon, I saw what is shown in Figure 9-3.

Figure 9-3.  Response to an incorrect choice

Chapter 9 US States Game: Building a Multiactivity Game

325

When I clicked the correct choice, the application responded appropriately,

as shown in Figure 9-4.

Figure 9-4.  Response to a correct answer

Chapter 9 US States Game: Building a Multiactivity Game

326

I decided that it would be helpful to offer the player the option to spread out all the

states. After clicking the button labeled Spread Out States, you see what is shown in

Figure 9-5.

Figure 9-5.  The states spread out

Chapter 9 US States Game: Building a Multiactivity Game

327

The player can use the Restore Original/Compress Map button or keep playing with

the states spread out. Clicking the Name the State button produces a prompt consisting

of one randomly selected state surrounded by a border, as shown in Figure 9-6.

Figure 9-6.  Border around the state to be named

Chapter 9 US States Game: Building a Multiactivity Game

328

Notice the double-line border around Delaware, the very small state on the right side

(Atlantic coast) in the middle. This demonstrates a case in which the states being spread

out would make a real difference for the player. Figure 9-7 shows the response to my

typing the correct answer.

Figure 9-7.  Response after the correct answer is submitted

Chapter 9 US States Game: Building a Multiactivity Game

329

The application also provides activity for the player in the form of a jigsaw puzzle.

After clicking the Do Jigsaw button, you will see something like Figure 9-8. I say

“something like” because the states are arranged using pseudorandom processing, so

they’ll appear in different arrangements each time.

Figure 9-8.  States jumbled for the jigsaw puzzle

Chapter 9 US States Game: Building a Multiactivity Game

330

The player can now use the mouse to drag and drop pieces in the same manner

(and implemented the same way) as the jigsaw-to-video puzzle described in Chapter 8.

Figure 9-9 shows my work in progress.

Observe that I have sorted out Alaska and Hawaii, five states in the West, seven states

in the South, all of New England, and New York and New Jersey. The feedback says that

Illinois and maybe more are out of position. The feedback could be improved, but it is

not strictly programming that is the issue.

This was a challenging puzzle for me. In the interests of full disclosure, and also

because it demonstrates a feature of the game, I clicked the Save & Close Jigsaw button,

which allowed me to see the states all back in position. I then clicked Restore Last Jigsaw

in Process to get back to where I was. With this facility available to me, I was able to get to

what is shown in Figure 9-10.

Figure 9-9.  Jigsaw puzzle in progress

Chapter 9 US States Game: Building a Multiactivity Game

331

The feedback indicates that something is wrong with North Dakota. After cheating—

that is, clicking Save & Close Jigsaw and looking at the completed map—I realized that

North Dakota and Kansas, two similar rectangular shapes, needed to be swapped.

Figure 9-11 shows the correct arrangement.

Figure 9-10.  Not quite correct

Chapter 9 US States Game: Building a Multiactivity Game

332

Notice that the positions of Alaska and Hawaii are not closely examined. The puzzle

is deemed complete.

After this introduction showing the features of this educational game, I will describe

the critical requirements for implementation.

�Critical Requirements
The critical requirements for the educational game involve presenting the player with

different types of activities. For the jigsaw puzzle activity, the application provides a save-

and-restore feature. This feature can be used to take a look at the completed puzzle or to

put the puzzle aside for a period of time and do something else. The task for the builder

of the game is to provide the features of the user interface and ways for play to go from

one type of activity to another.

The application requires the presentation of a complete map of the United

States, with the individual states clickable. The first type of activity I described in the

“Introduction” section was for the game to display the name of a state and prompt the

player to click it. The application must be able to determine if the response was right or

wrong and provide feedback.

Figure 9-11.  Jigsaw puzzle put together correctly

Chapter 9 US States Game: Building a Multiactivity Game

333

The next type of activity I demonstrated is the opposite. A state on the map is marked

in some way, and the player is prompted to type in the name. There are different ways to

single out an individual state. I chose to put a border around the state to be named. The

program must read in the player input and determine if the name was correct.

After implementing these two types of activities, it occurred to me that we have some

very small states. I then decided to provide the spread-out feature and the capability

of undoing it. This could be useful for other maps as well. I also modified the image

representing tiny Rhode Island to be bigger.

Lastly, I decided to provide a way to see if people could put the states together. The

application presents a jigsaw puzzle in which the states are randomly positioned on

the screen, and the player uses the mouse to reposition them. It was at this point that I

realized that I needed something different from the drag-and-drop-in-bins feature of

HTML5. If you haven’t done so already, you can now read Chapter 8 for how to implement

a jigsaw puzzle. The US States game has two additional requirements: I need to build

a way to enter jigsaw mode and exit it so that the buttons all work and so the player

can click a state. I also need a way to save an incomplete puzzle. This wasn’t necessary

for the monkey bar video featured in the jigsaw-to-video project in Chapter 8, but it is

necessary for a jigsaw puzzle with 50 pieces. I also view this as an educational game, so it

is appropriate to give players a chance to look at the completed map, and also to rest.

�HTML5, CSS, JavaScript Features, Programming
Techniques, and Image Processing
The features and techniques to implement the educational states game are, for the most

part, things you have seen before. However, putting them together can be tricky, so there

will be some redundancy between this chapter and the material in previous chapters.

�Acquiring the Image Files for the Pieces and
Determining Offsets
Image files for each of the 50 states are part of the downloads for this chapter. However,

since you may want to make your own map puzzle, I will describe the critical features

of the puzzle pieces and the information necessary for checking positioning and for

restoring the completed map which must be recorded.

Chapter 9 US States Game: Building a Multiactivity Game

334

You need to produce image files for each puzzle piece, that is, each individual state of

the United States for my game. Since no state is strictly rectangular and image files need

to be rectangles, the images will be a bounding box for each state with the areas outside

the actual state transparent. There is no special treatment to accommodate the islands of

Hawaii or upper and lower Michigan.

The first tasks for making the individual pieces representing the states is to acquire

a map of the United States (or the country or region you pick) and to pick your favorite

image processing program. I used Adobe Flash, which was popular when I made my first

United States game example, but will illustrate the process using pixlr, an online image

editing tool. The numbers in the source are from my original implementation and will not

be the numbers mentioned here. Figure 9-12 shows the map of the United States. Alaska

and Hawaii are not positioned accurately. I finesse this challenge by simply not checking

positioning for these two states when my code checks on the job done by the player.

Figure 9-12.  Original complete map image in pixlr

The next task is to determine the relative location information for each state. The

information needed is the relative location of the upper-left corner for a bounding

rectangle for each state. This point may not be on the state, but it will determine the

correct position. In Figure 9-13, I have used the marquee tool to draw a box around the

state of Illinois.

Chapter 9 US States Game: Building a Multiactivity Game

335

When doing this, I write down the x and y coordinates of the starting position, the

upper-left corner of the box, from the Navigator panel, shown in Figure 9-14.

Figure 9-13.  Box around Illinois

Figure 9-14.  Navigator panel

Note T hese are not the coordinates for the upper corner for Illinois, but what was
produced during my process for taking screenshots. The Navigator panel shows
the position of the mouse.

Chapter 9 US States Game: Building a Multiactivity Game

336

The next task is to copy the selection into a new image using first Copy on the

drop-down menu under Edit on the pixlr toolbar and then New Image under File.

Figure 9-15 shows the panel that appears. Notice that I have given the image a name,

Illinois, and the instructions to take the image from the clipboard and maintain

transparency. I will need to do something to create the transparent regions.

Figure 9-15.  Panel to create a new image, giving it a name and instructions

Chapter 9 US States Game: Building a Multiactivity Game

337

I now use the wand (also sometimes called magic wand) tool and click on the light

green Illinois. This selects just Illinois, as shown in Figure 9-17, using the color. It does

not have to be the only light green region on the map but just be different from the

adjacent regions.

Figure 9-16.  New image holding Illinois

The pixlr program now has two images and I needed to move the big map one to get

at the new image. I also used the zoom feature under View to make it bigger. It is shown

in Figure 9-16.

Chapter 9 US States Game: Building a Multiactivity Game

338

Figure 9-17.  Selection of Illinois using the wand tool

Chapter 9 US States Game: Building a Multiactivity Game

339

What I want is to cut out everything except the Illinois shape. This is performed by

Edit/Invert Selection. This is shown in Figure 9-18. By the way, I saved this file as a PNG

with transparency and named it Illinois1, just to not confuse myself.

Figure 9-18.  Inverted selection: everything except the image of Illinois

Chapter 9 US States Game: Building a Multiactivity Game

340

Then I Edit/Cut and produce the Illinois shape against a white background, which

actually is transparent. Figure 9-19 shows the image that I save.

These are the necessary steps for each state.

I created arrays holding the names of the image files and the horizontal (x) and

vertical (y) offset data. I also created an array listing the full names of the states. These

are four parallel arrays. An alternative approach could be to systematically save the files

with an underscore for any internal breaks—for example, North_Carolina.gif. I could

write code to replace the underscore with a blank both for the game to display and for

checking player’s answers. However, I decided to produce the names directly. Having

described the creation of the four parallel arrays holding everything the program needs

for the states, it now is time to review how to create the elements.

Figure 9-19.  The Illinois image against a transparent background

Chapter 9 US States Game: Building a Multiactivity Game

341

�Creating Elements Dynamically
Chapter 6 and Chapter 8 each involved generating HTML markup dynamically—that is,

during runtime. The states game and other map games you may create will also feature

this technique. The work is done in the function setupgame.

The code determines how many elements—that is, puzzle pieces—from the nums

variable have been set to be the length of the states array. If and when you build

a puzzle with 10 countries, for example, nums will be set to 10. A for loop is used to

construct an element for each state. Each element has a generated unique ID value.

The attribute innerHTML of any element is set to be the markup. The code uses the

information in the array variables states, statesx, and statesy. As was the case in the

last chapter, the code converts numbers to character strings, and then concatenates the

string "px" to make the values for setting the style.top and style.left attributes of the

element. The code follows:

function setupgame() {

 var i;

 var x;

 var y;

 var uniqueid;

 var s;

 for(i=0;i<nums;i++) {

 uniqueid = "a"+String(i);

 s = document.createElement('state');

 s.innerHTML = (

 "");

 document.body.appendChild(s);

 thingelem = document.getElementById(uniqueid);

 x = statesx[i] +310;

 y = statesy[i] + 200;

 thingelem.style.top = String(y)+"px";

 thingelem.style.left = String(x)+"px";

 stateelements.push(thingelem);

 }

Chapter 9 US States Game: Building a Multiactivity Game

342

 questionfel = document.getElementById("questionform");

 questionfel.style.left = "100px";

 questionfel.style.top = "500px";

 questionfel.question.value = " ";

 questionfel.feedback.value = " ";

}

The element is created of a custom defined type 'state'. Its innerHTML is set with

the appropriate value. The positioning is done using the offset values in the statesx and

statesy arrays (corresponding to the arrays I named piecesx and piecesy in Chapter 8).

The second part of the setupgame function positions the form already present in the body

element. The form will be used for the identifying and naming activities.

�User Interface Overall
It is time to reveal the body element for the application since that will show the buttons

for the various operations:

<body id="body" onLoad="init();">

<button onClick="spread();">Spread out states </button>

<button onClick="restore();">Restore original /compress map </button>

<button onClick="setupfindstate();">Find the state </button>

<button onClick="setupidentifystate();">Name the state</button>

<button onClick="setupjigsaw();">Do jigsaw</button>

<button onClick="restorepreviousjigsaw();">Restore last jigsaw in process

</button>

<h1>USA</h1>

<form id="questionform" name="questionform" onSubmit="return checkname();">

State name: <input type="text" name="question" value=" " size="40"/>

<input name="submitbut" type="submit" value=" " size="30"/>

Feedback: <input type="text" name="feedback" value=" " size="40" />

</form>

</body>

The HTML markup produces the six buttons at the top of the screen (refer back to

Figure 9-1). The buttons on top each invoke a function; more detail on each follows in

the next few sections. The form at the bottom is used in distinct ways for each of the

Chapter 9 US States Game: Building a Multiactivity Game

343

three different types of activity. This is a design decision; I am trying to be efficient with

screen real estate, avoiding the clutter of multiple forms at the possible cost of confusion

to the player.

�User Interface for Asking the Player to Click a State
After the player clicks the Find the State button, the application generates a question.

Before choosing the state, the program removes any border that may exist around the last

chosen state. This situation could arise if the player had just performed the name a state

activity. If this is the very first activity by the player, the code would not produce an error,

but would merely set the border of the 0th state to empty, which is what it already was.

It is a good habit to make the start of any activity do this type of housekeeping.

It makes the application easier to change or upgrade in the future. Similarly, if the previous

question also was an identifying question, the code would not produce an error. This

transition from activity to activity must be attended to for the game to work smoothly. We

do not want any state to have a border when the player has moved on to the next activity.

The setupfindstate function makes a random choice among the states. The global

variable choice holds a value made for the random choice. The function then sets up

event handling for each of the elements corresponding to a state. The prompt for the

player is placed in the question field of the form.

function setupfindstate(){

 var i;

 var thingelem;

 stateelements[choice].style.border="";

 choice = Math.floor(Math.random()*nums);

 for (i=0;i<nums;i++) {

 thingelem = stateelements[i];

 thingelem.addEventListener('click',pickstate,false);

 }

 var nameofstate = names[choice];

 questionfel.question.value = "Click on "+nameofstate;

 questionfel.feedback.value = " ";

 questionfel.submitbut.value = "";

}

Chapter 9 US States Game: Building a Multiactivity Game

344

The appropriate player response for this activity is to click a state on the map. When

the player clicks any state, JavaScript event handling is set up to invoke the pickstate

function. The task of this function is to determine if the player’s pick was the correct one.

To do this, my code uses information in the event information passed to the function and

the value in the global variable choice set by setupfindstate. The code for pickstate is

function pickstate(ev) {

 var picked = Number(ev.target.id.substr(1));

 if (picked == choice) {

 questionfel.feedback.value = "Correct!";

 }

 else {

 questionfel.feedback.value = "Try Again.";

 }

 }

Now I need to remind you of how I set the ID fields for each of the state elements.

I used the index values 0 to 49 and added an a at the beginning. This addition of an

a was not strictly necessary. I did it when I thought I may be creating other sets of

elements. The ev parameter to pickstate has a target attribute referencing the target

that received the click event. The ID of that target would be a0, or a1, or a2, and so forth.

The String method substr extracts the substring of a string starting at the parameter, so

substr(1) returns 0, 1, 2, and so on. My code turns the string into a number. It now can

be compared to the value in the global variable choice.

You may decide to limit the number of tries a player can make and/or provide hints.

�User Interface for Asking the Player to Name a State
After the player chooses to do the activity of naming a state, the setupidentifystate

function is invoked. The task is to place a border around a state on the map and prompt the

player to type in the name. For this operation, unlike the last one, my code puts in a value

for the submit button. The function also removes the event handling for clicking a state.

function setupidentifystate(){

 stateelements[choice].style.border="";

 stateelements[choice].style.zIndex = "";

 choice = Math.floor(Math.random()*nums);

Chapter 9 US States Game: Building a Multiactivity Game

345

 stateelements[choice].style.border="double";

 stateelements[choice].style.zIndex = "20";

 questionfel.question.value = "Type name of state with border HERE";

 questionfel.submitbut.value = "Submit name";

 questionfel.feedback.value = " ";

 var thingelem;

 for (i=0;i<nums;i++) {

 thingelem = stateelements[i];

 thingelem.removeEventListener('click',pickstate,false);

 }

}

The player’s action is examined by the checkname function. This is already set up as

the onsubmit attribute for the form. The function checkname actually does double-duty:

if the current activity is doing the jigsaw, checkname ends that activity by restoring the

states to their original locations, that is, the original map of the whole United States. If

the player is not doing the jigsaw puzzle, checkname checks whether or not the player has

typed in the correct name for the chosen state. The code in checkname follows:

function checkname() {

 if (doingjigsaw) {

 restore();

 }

 else {

 var correctname = names[choice];

 var guessedname = document.questionform.question.value;

 if (guessedname==correctname) {

 questionfel.feedback.value = "Correct!";

 }

 else {

 questionfel.feedback.value = "Try again.";

 }

 return false;

 }

}

Chapter 9 US States Game: Building a Multiactivity Game

346

Notice that again I do not limit the number of tries, nor do I give any hint or any

tolerance for misspellings.

�Spreading Out the Pieces
The task of spreading out the states while maintaining their positional relationships is

straightforward, although I did some experimentation with the constants to get the effect

I wanted. The idea is to use the offset values in a systematic way. The offsets represent

distances from a point roughly in the center of the map. My code stretches those offset

values for all the states except Alaska and Hawaii. I have positioned Alaska and Hawaii to

be the last two states. The code follows:

function spread() {

 var i;

 var x;

 var y;

 var thingelem;

 for (i=0;i<nums-2;i++) { // don't move alaska or hawaii

 x = 2.70*statesx[i] +410;

 y = 2.70*statesy[i] + 250;

 thingelem = stateelements[i];

 thingelem.style.top = String(y)+"px";

 thingelem.style.left = String(x)+"px";

 }

}

Restoring the states is simply a matter of repositioning them at the values

indicated in the statesx and statesy arrays. The restore function will be explained

following, in the “Saving and Recreating the State of the Jigsaw Game and Restoring the

Original Map” section.

Chapter 9 US States Game: Building a Multiactivity Game

347

�Setting Up the Jigsaw Puzzle
Setting up the jigsaw activity involves randomly positioning the states on the screen and

setting up the event handling for the mouse operations. It also means turning off the

default drag-and-drop event handling and also turning off the buttons at the top of the

screen. The submit button on the question form at the bottom of the screen will be left

operational, and this button will perform the operation of saving the state of the jigsaw

puzzle, as described in the next section. The only way to stop the jigsaw activity, restore

the map, and return to the other activities is to click the button.

The newly created div with ID fullpage, created to prevent the drag-and-drop

default action, is set up in the style section to not cover the bottom of the screen

containing the form. The CSS is

#fullpage

{

 display:block;

 position:absolute;

 top:0;

 left:0;

 width:100%;

 height:90%;

 overflow: hidden;

 z-index: 1;

}

Recall that in CSS, the layering is done with the attribute z-index. In JavaScript, the

attribute is zIndex. The setupjigsaw function follows:

function setupjigsaw() {

 doingjigsaw = true;

 stateelements[choice].style.border="";

 var i;

 var x;

 var y;

 var thingelem;

 for (i=0;i<nums;i++) {

 x = 100+Math.floor(Math.random()*600);

Chapter 9 US States Game: Building a Multiactivity Game

348

 y = 100+Math.floor(Math.random()*320);

 thingelem = stateelements[i];

 thingelem.style.top = String(y)+"px";

 thingelem.style.left = String(x)+"px";

 thingelem.removeEventListener('click',pickstate,false);

 }

 d.onmousedown = startdragging;

 d.onmousemove = moving;

 d.onmouseup = release;

 var df = document.createElement('div');

 df.id = "fullpage";

 bodyel.appendChild(df);

 questionfel.question.value = "";

 questionfel.submitbut.value = "Save & close jigsaw";

 questionfel.feedback.value = " ";

 questionfel.style.zIndex = 100;

}

The player does the jigsaw puzzle by using the mouse to reposition the pieces.

Go back to Chapter 8 for explanation of the use of the mouse events. The check for

completeness is done each time the player lets up on the mouse button. The release

function invokes the function I named checkpositions. The checkpositions puzzle

computes the average difference in x and the average difference in y of the actual

positions of the pieces to the offsets stored in the statesx and statesy arrays. The

code then checks if any difference is more than the tolerance amount from the

corresponding average. The function stops iterating over the pieces as soon as one is

found to be out of place. For the very simple six-piece jigsaw puzzle in Chapter 8, my

feedback to the player when this occurs is simply to display “Keep working.” For the US

States game, I wanted to do something more. What I decided to do was to report the

first state in which either the x or the y difference was greater than the average. When

most of the pieces are not in place, this information is not especially helpful, so this is

an opportunity for improvement.

Chapter 9 US States Game: Building a Multiactivity Game

349

�Saving and Recreating the State of the Jigsaw Game
and Restoring the Original Map
As I noted previously, the only way to end the jigsaw activity is to click the submit button

on the form. If the global variable doingjigsaw is true, then the restore function is

invoked. The restore function will turn off the event handling for the mouse and remove

the fullpage div. I realized that even I could not complete the jigsaw puzzle in a single

session and without cheating—that is, looking at the completed puzzle. I am getting better

at it, however. This is what motivated me to implement a save-and-restore feature.

The issue of defining application states depends, naturally enough, on the application.

Saving the state of a jigsaw game in process requires code to encode the position of each

puzzle piece. For the jigsaw puzzle, what needs to be stored are the style.top and style.

left attributes of each of the elements. I will be using the localStorage feature of HTML5,

which is a version of cookies. I will describe localStorage next. The goal for this program

is to have one character string hold all the information. What I do first is combine style.

top and style.left into one string by using & to concatenate them. I then put each of

these strings into an array using the following line:

xydata.push(thingelem.style.top+"&"+thingelem.style.left);

When all 50 strings have been placed in the array, my code uses the join method

to combine everything in one big array, with the delimiter of my choice (;) separating

them. This is the string that is stored using localStorage.

In HTML5, localStorage is a variation on cookies. Values are stored on the player’s

(client) computer as name/value pairs. A localStorage item is associated with the

browser. The state of the jigsaw puzzle stored when using Firefox will not be available

when using Chrome. For the name of the localStorage item, I use the name jigsaw,

and for the value, the result of the join operation.

The localStorage facility may not work. For example, the player may have used the

browser settings to prevent any use of cookies, localStorage or other, similar features. A

localStorage item is associated with a specific web domain. Chrome allows setting and

retrieving from a program on the local computer. When I originally built this application,

Firefox threw an error for retrieving data. My code uses try and catch to present an

alert statement if there are problems. Figure 9-20 shows the result of trying to restore a

jigsaw puzzle saved using Firefox when using a file on the local computer. This could also

happen if the player/user turned off the use of cookies.

Chapter 9 US States Game: Building a Multiactivity Game

350

Moving on, there are two distinct functions: restore and restorepreviousjigsaw.

Remember that the restore function does double-duty: it restores the original map after

the pieces are spread out and it restores the original map after the player has done the

jigsaw activity.

function restore() {

 var i;

 var x;

 var y;

 var thingelem;

 var df;

 var lsname = "jigsaw";

 var xydata = [];

 var stringdata;

 if (doingjigsaw) {

 doingjigsaw = false;

 d.onmousedown = "";

Figure 9-20.  Alert shown when trying to use localStorage locally with Firefox

Chapter 9 US States Game: Building a Multiactivity Game

351

 d.onmousemove = "";

 d.onmouseup = "";

 df = document.getElementById("fullpage");

 bodyel.removeChild(df);

 for (i=0;i<nums;i++) {

 thingelem = stateelements[i];

 xydata.push(thingelem.style.top+"&"+thingelem.style.left);

 }

 stringdata = xydata.join(";");

 try {

 localStorage.setItem(lsname,stringdata);

 }

 catch(e) {

 alert("data not saved, error given: "+e);

 }

 }

 for (i=0;i<nums;i++) {

 x = statesx[i] +310;

 y = statesy[i] + 200;

 thingelem = stateelements[i];

 thingelem.style.top = String(y)+"px";

 thingelem.style.left = String(x)+"px";

 }

}

The restorepreviousjigsaw function attempts to read in the data stored as one

long string in localStorage under the name jigsaw; decodes the string to be an array

of 50 strings, each one holding the top and left information; and uses that information

to position the pieces. The function then sets up event handling for the mouse events

and sets up the fullpage div. Finally, the function sets the label of the submit button to

indicate that this button saves and closes the puzzle. The code follows:

function restorepreviousjigsaw() {

 var i;

 var lsname = "jigsaw";

 var xydata;

Chapter 9 US States Game: Building a Multiactivity Game

352

 var stringdata;

 var ss; // will hold combined top and left for a state

 var ssarray;

 var thingelem;

 try {

 stringdata = localStorage.getItem(lsname);

 xydata = stringdata.split(";");

 for (i=0;i<nums;i++) {

 ss = xydata[i];

 ssarray = ss.split("&");

 thingelem = stateelements[i];

 thingelem.style.top = ssarray[0];

 thingelem.style.left = ssarray[1];

 }

 doingjigsaw = true;

 stateelements[choice].style.border="";

 d.onmousedown = startdragging;

 d.onmousemove = moving;

 d.onmouseup = release;

 var df = document.createElement('div');

 df.id = "fullpage";

 bodyel.appendChild(df);

 questionfel.question.value = "";

 questionfel.submitbut.value = "Save & close jigsaw";

 questionfel.feedback.value = " ";

 questionfel.style.zIndex = 100;

 }

 catch(e) {

 alert("Problem in restoring previous puzzle. Click on Do jigsaw.");}

}

Chapter 9 US States Game: Building a Multiactivity Game

353

�Building the Application and Making It Your Own
You can make the project your own by refining and building on the states application,

perhaps giving hints or keeping score, or using the application as a model for a different

part of the world. For a different map, do pay attention to the special handling I use for

Alaska and Hawaii. You probably will want to remove the nums-2 where it occurs. You

can add another parallel array with the names of the capitals and make naming the

capital and identifying a state with an indicated capital additional activities. You also

can use this as a model for identifying parts of any diagram or picture (e.g., parts of the

body). Notice that each activity has a function for setting up and a function for checking

the response.

You can use what is described in Chapter 8 to make this project work with finger

touches. The US states seemed too much for a phone, but it may be feasible for a tablet.

You can use the methods shown in Chapter 5 to extract the content to an external file.

If you’re feeling really brave, you may also want to experiment with using SVG (scalable

vector graphics) to create a vector version of the map.

The application demonstrated individual features that you can use for other projects.

An informal outline/summary of the functions in the states game follows:

•	 init is for initialization, including invoking setupgame.

•	 setupgame builds the state elements and positions the form.

•	 setupfindstate sets up the clicking state function and pickstate

checks the player’s response.

•	 setupidentifystate sets up the typing in the name, and checkname

checks the response.

•	 setupjigsaw sets up the jigsaw puzzle. The functions startdragging,

moving, and release, along with offset and draw, handle the player actions

with regard to using the mouse to move pieces. The checkpositions

function, along with doaverage, checks if the puzzle is complete.

•	 spread spreads out the pieces and restore restores the pieces to the

original map locations. The restore function also saves the state of

the jigsaw puzzle using localStorage.

•	 restorepreviousjigsaw extracts the information from localStorage

to set up the puzzle as it was left.

Chapter 9 US States Game: Building a Multiactivity Game

354

More formally, Table 9-1 lists all the functions and indicates how they are invoked

and what functions they invoke. Notice that several functions are invoked as a result of

the function being specified as a method of an object type.

Table 9-1.  Functions in the US States Game Project

Function Invoked/Called By Calls

init Invoked by action of the onLoad attribute in

the <body> tag

setupgame

setupgame Invoked by init

pickstate Invoked by addEventListener call in

setupfindstate

spread Invoked by button

restore Invoked by button and checkname

restorepreviousjigsaw Invoked by button

setupfindstate Invoked by button

setupidentifystate Invoked by button

checkname Invoked as an action of onSubmit in the form restore

checkpositions Invoked by release of

mouse (mouseup event)

doaverage

doaverage Invoked by checkpositions

setupjigsaw Invoked by button

release Invoked by setting up events in

restorepreviousjigsaw and setupjigsaw

checkpositions

startdragging Invoked by setting up events in

restorepreviousjigsaw and setupjigsaw

offset

moving Invoked by setting up events in

restorepreviousjigsaw and setupjigsaw

draw

draw Invoked by moving the mouse (mousemove

event)

offset Invoked by startdragging

Chapter 9 US States Game: Building a Multiactivity Game

355

Table 9-2 shows the code for the basic application, with comments for each line.

Table 9-2.  Complete Code for the US States Game Project

Code Line Description

<!DOCTYPE html> Doctype header

<html> html tag

<head> head tag

 <title>USA States game</title> Complete title

<style> style tag

img {position:absolute;} All image elements positioned absolutely

form {position: absolute; z-index: 10;} Form positioned absolutely

body{ height:100%; margin: 0;} Body styled to take up whole height

 #fullpage Style directive for the created div

{ display:block; position:absolute;

top:0; left:0; width:100%;

height:90%; overflow: hidden;

z-index: 1; }

Take up whole width and nearly whole height;

layer underneath

</style> Closing style tag

<script type="text/javascript"> script tag

var names = [Names of the states; one of many parallel arrays

with information on states; order and grouping

here not important but order must be the same

and Alaska and Hawaii last

 �"Illinois","Iowa","Missouri",

"Oregon","Michigan",

 �"Indiana","Vermont",

"New Hampshire","Maine",

"South Dakota","North Dakota",

 �"Ohio","Wisconsin","Kentucky",

"Tennessee",

(continued)

Chapter 9 US States Game: Building a Multiactivity Game

356

Table 9-2.  (continued)

Code Line Description

 �"North Carolina","South Carolina",

"Georgia","Alabama","Mississippi",

 �"Virginia","West Virginia",

"Maryland","Delaware","Pennsylvania",

"New Jersey","New York",

 �"Rhode Island", "Connecticut",

"Massaschusetts","Louisiana",

"Arkansas","Minnesota",

 "Florida","Kansas",

 �"Arizona","California","Colorado","

Idaho","Montana","Nebraska",

 �"Nevada","New Mexico","Texas",

"Oklahoma","Utah","Washington",

"Wyoming","Hawaii","Alaska"

] End of names array

var states = [Array for addresses of image files

 "illinois.gif",

 "iowa.gif",

 "missouri.gif",

 "oregon.gif",

 "michigan.gif",

 �"indiana.gif", "vermont.gif",

"newhampshire.gif","maine.gif",

"southdakota.gif","northdakota.gif",

 �"ohio.gif","wisconsin.gif",

"kentucky.gif","tennessee.gif",

(continued)

Chapter 9 US States Game: Building a Multiactivity Game

357

Table 9-2.  (continued)

Code Line Description

 �"northcarolina.gif",

"southcarolina.gif","georgia.gif",

"alabama.gif","mississippi.gif",

 �"virginia.gif","westvirginia.gif",

"maryland.gif","delaware.gif",

 �"pennsylvania.gif","newjersey.gif",

"newyork.gif",

 �"rhodeislandbig.gif",

"connecticut.gif",

"massachusetts.gif","louisiana.gif",

"arkansas.gif","minnesota.gif",

 "florida.gif","kansas.gif",

 �"arizona.gif","california.gif",

"colorado.gif","idaho.gif",

"montana.gif","nebraska.gif",

 �"nevada.gif","newmexico.gif",

"texas.gif","oklahoma.gif",

"utah.gif","washington.gif",

"wyoming.gif","hawaii.gif",

"alaska.gif"

]; End of address-of-image-files array

var statesx = [Array of horizontal (x) offsets

 88.65,60.15,65.40,

 -81.70,90.40,

 �107.40,171.95,181.00,183.00,21.10,

22.60,

(continued)

Chapter 9 US States Game: Building a Multiactivity Game

358

Table 9-2.  (continued)

Code Line Description

 121.70,78.90,103.65,99.40,

 132.20,138.95,125.45,110.45,93.90,

 �138.95,138.95,151.65,171.95,144.20,

174.20,147.95,

 �187.75,179.35,177.60,77.40,73.65,

54.15,

 115.70,32.35,

 �-44.95,-86.85,-8.15,-47.20,

-32.15,21.10,

 �-66.70,-11.15,-4.40,22.60, -36.70,

-72.50,-15.65,-300.95,-230.30

]; End of statesx array

var statesy = [Array of vertical (y) offsets

 -26.10,-29.85,-8.45,

 -64.75,-59.05,

 �-22.70,-66.00,-67.30,-85.65,

-47.15,-70.30,

 -27.90,-55.30,-3.60,12.90,

 5.20,21.45,26.40,27.90,29.65,

 �-13.20,-17.10,-19.85,-20.85,

-36.40,-31.35,-61.30,

 �-41.85,-41.85,-50.85,47.10,21.15,

-72.70,

 55.45,-2.85,

 �15.15,-35.75,-11.85,-76.70,-76.30,

-23.85,

(continued)

Chapter 9 US States Game: Building a Multiactivity Game

359

Table 9-2.  (continued)

Code Line Description

 �-27.60,18.15,22.65,19.65,-22.35,

-83.45,-41.75,31.55,-171.30

]; End of statesy array

var doingjigsaw = false; Flag indicating if doing jigsaw

var bodyel; Used to hold reference to body

var nums = states.length; Number of states

var stateelements = []; Will hold the dynamically created elements

var questionfel; Used to hold reference to form

function init(){ Header for init function

 setupgame(); Invoke setupgame

 �bodyel = document.

getElementById("body");

Set reference to use to add fullpage div

} Close init function

function setupgame() { Header for setupgame function

 var i; For indexing

 var x; For x value

 var y; For y value

 var uniqueid; For the unique ID created for each element

 var s; Hold each newly created element

 for(i=0;i<nums;i++) { Iterate over the states

 uniqueid = "a"+String(i); Define an ID

s = document.createElement('state'); Create element

s.innerHTML = (

"<img src='"+states[i]+

"' id='"+uniqueid+"'/>");

Set the HTML markup contents of the newly

created element to be an image with the

attributes as indicated

(continued)

Chapter 9 US States Game: Building a Multiactivity Game

360

Table 9-2.  (continued)

Code Line Description

 document.body.appendChild(s); Append to body

thingelem = document.

getElementById(uniqueid);

Get the reference

 x = statesx[i] +310; Calculate horizontal coordinate

 y = statesy[i] + 200; Calculate vertical coordinate

thingelem.style.top =

String(y)+"px";

Set style.top to be x

thingelem.style.left=

String(x)+"px";

Set style.left to be y

stateelements.push(thingelem); Add to stateelements array

 } Close for loop

questionfel = document.getElement

ById(“questionform”);

Set reference to form

questionfel.style.left = "100px"; Position form horizontally

questionfel.style.top = "500px"; Position form vertically

questionfel.question.value = " "; Clear out question field

questionfel.feedback.value = " "; Clear out feedback field

} Close setupgame function

 function pickstate(ev) { Header for pickstate function

var picked = Number(ev.target.

id.substr(1));

Extract and calculate index for the state the

player picked

 if (picked == choice) { Compare to choice

questionfel.feedback.value =

"Correct!";

Display feedback as correct

 } Close clause

(continued)

Chapter 9 US States Game: Building a Multiactivity Game

361

Table 9-2.  (continued)

Code Line Description

 else { Else

questionfel.feedback.value = "Try

Again.";

Display feedback to try again

 } Close clause

 } Close pickstate function

function spread() { Header for spread function

 var i; For indexing

 var x; For x value

 var y; For y value

 var thingelem; For element

 for (i=0;i<nums-2;i++) { Iterate over 48 states

 x = 2.70*statesx[i] +410; Stretch out x and add constant

 y = 2.70*statesy[i] + 250; Stretch out y and add constant

 thingelem = stateelements[i]; Get ith element

thingelem.style.top =

String(y)+"px";

Set style.top

thingelem.style.left=

String(x)+"px";

Set style.left

 } Close for loop

} Close spread function

function restore() { Header for restore function

 var i; For indexing

 var x; For x

 var y; For y

 var thingelem; For element reference

(continued)

Chapter 9 US States Game: Building a Multiactivity Game

362

Table 9-2.  (continued)

Code Line Description

 var df; Used to remove fullpage

 var lsname = "jigsaw"; Name for localStorage

 var xydata = []; Used for saving

 var stringdata; Used for saving

 if (doingjigsaw) { Check if doingjigsaw is true

 doingjigsaw = false; Set to false

 d.onmousedown = ""; Remove event handling

 d.onmousemove = ""; Remove event handling

 d.onmouseup = ""; Remove event handling

df=

document.getElementById("fullpage");

Get reference

 bodyel.removeChild(df); Remove df

 for (i=0;i<nums;i++) { Iterate over states

 thingelem = stateelements[i]; Get reference to ith state element

 �xydata.push(thingelem.style.

top+"&"+thingelem.style.left);

Create a string that combines top and left

settings and add this to the xydata array

 } Close for loop

 stringdata = xydata.join(";"); Generate a string from the array

 try { Try (since there may be problems with

localStorage)

 �localStorage.

setItem(lsname,stringdata);

Set localStorage item

 } End try clause

 catch(e) { catch clause

alert("data not saved, error given: "+e); Error message

 } Close catch clause

(continued)

Chapter 9 US States Game: Building a Multiactivity Game

363

Table 9-2.  (continued)

Code Line Description

 } Close if doingjigsaw

 for (i=0;i<nums;i++) { Iterate over states

 x = statesx[i] +310; Set x to be original x-coordinate

 y = statesy[i] + 200; Set y to be original y-coordinate

 thingelem = stateelements[i]; Get reference to ith state

thingelem.style.top = String(y)+"px"; Set style.top

thingelem.style.left= String(x)+"px"; Set style.left

 } Close for loop

} Close restore function

function restorepreviousjigsaw() { Header for restorepreviousjigsaw function

 var i; For indexing

 var lsname = "jigsaw"; Name used for localStorage

 var xydata; Will be used in extracting the data

 var stringdata; Will be used in extracting the data

 var ss; Will hold combined top and left for a state

 var ssarray; Will be used in extracting the data

 var thingelem; Reference of ith state element

 try { Try

stringdata = localStorage.

getItem(lsname);

Fetch the data saved in localStorage under

the name "jigsaw"

 xydata = stringdata.split(";"); Generate an array from stringdata

 for (i=0;i<nums;i++) { Iterate over states

 ss = xydata[i]; Extract the ith element of xydata

 ssarray = ss.split("&"); Split this string to get two values

 thingelem = stateelements[i]; Get the ith element

(continued)

Chapter 9 US States Game: Building a Multiactivity Game

364

Table 9-2.  (continued)

Code Line Description

thingelem.style.top = ssarray[0]; Set style.top to be the 0th item

thingelem.style.left = ssarray[1]; Set style.left to be the first item

 } Close for loop

 doingjigsaw = true; Set for doing the jigsaw

stateelements[choice].style.border=""; Remove any border

 d.onmousedown = startdragging; Set up event handling

 d.onmousemove = moving; Set up event handling

 d.onmouseup = release; Set up event handling

 �var df = document.

createElement('div');

Create a div

 df.id = "fullpage"; Give it an ID of fullpage

 bodyel.appendChild(df); Append to body

questionfel.question.value = ""; Clear out question field

questionfel.submitbut.value = "Save

& close jigsaw";

Set label of the submit button

questionfel.feedback.value = " "; Clear out feedback field

 questionfel.style.zIndex = 100; Set form to be on top

 } Close try clause

 catch(e) { Catch

 �alert("Problem in restoring

previous puzzle. Click on Do

jigsaw.");}

Display alert box

} Close restorepreviousjigsaw function

var choice = 0; Global variable holding right answer

function setupfindstate(){ Header for setupfindstate function

(continued)

Chapter 9 US States Game: Building a Multiactivity Game

365

Table 9-2.  (continued)

Code Line Description

 var i; For indexing

 var thingelem; Reference to element

 stateelements[choice].style.border=""; Remove border of last choice, if there was one

 �choice = Math.floor(Math.

random()*nums);

Make a random choice for the question

 for (i=0;i<nums;i++) { Iterate over the states

 thingelem = stateelements[i]; Set reference to ith element

 �thingelem.addEventListener

('click',pickstate,false);

Set up event handling for this element

 } Close for loop

var nameofstate = names[choice]; Use choice as index to names array

 �questionfel.question.value =

"Click on "+nameofstate;

Set the prompt

 questionfel.feedback.value = " "; Clear out feedback

 questionfel.submitbut.value = ""; Submit button not used for this task

} Close setupfindstate function

function setupidentifystate(){ Header for setupidentifystate function

stateelements[choice].style.border=""; Remove previous border

stateelements[choice].style.zIndex=""; Put this state underneath what will be the next

choice

 �choice = Math.floor(Math.

random()*nums);

Make random choice

 �stateelements[choice].style.

border="double";

Set border around the choice state

stateelements[choice].style.

zIndex="20";

Make this element on top of others, so border will

be on top

(continued)

Chapter 9 US States Game: Building a Multiactivity Game

366

Table 9-2.  (continued)

Code Line Description

 �questionfel.question.value = "Type

name of state with border HERE";

Set up prompt indicating where to type in answer

 �questionfel.submitbut.value =

"Submit name";

Set up label for button

questionfel.feedback.value = " "; Clear feedback field

 var thingelem; Used for holding references to elements

 for (i=0;i<nums;i++) { Iterate over states

 thingelem = stateelements[i]; Set to be ith element

 �thingelem.removeEventListener

('click',pickstate,false);

Remove event handling

 } Close for loop

} Close setupidentifystate function

function checkname() { Header for checkname function

 if (doingjigsaw) { If player was doing jigsaw, then . . .

 restore(); . . . invoke restore

 } End clause

 else { Otherwise

 var correctname = names[choice]; This is the correct name

 �var guessedname = document.

questionform.question.value;

This was what the player typed in

 if (guessedname==correctname) { Was the player correct?

 �questionfel.feedback.value =

"Correct!";

Display feedback

 } End clause

 else { Else

(continued)

Chapter 9 US States Game: Building a Multiactivity Game

367

Table 9-2.  (continued)

Code Line Description

 �questionfel.feedback.value = "Try

again.";

Display feedback

 } End clause

 return false; Return false to prevent refresh (may not be

necessary)

 } End if-not-jigsaw clause

} Close checkname function

function checkpositions() { Header for checkpositions function

 var i; Indexing

 var x; For x

 var y; For y

 var tolerance = 20; Margin allowed for positioning

 var deltax = []; Will hold the x differences

 var deltay = []; Will hold the y differences

 var delx; Used in computation

 var dely; Used in computation

 for (i=0;i<nums-2;i++) { Iterate over first 48 states; doesn’t check Alaska

or Hawaii

x = stateelements[i].style.left; x is this state’s left

y = stateelements[i].style.top; y is this state’s top

 x = x.substr(0,x.length-2); Remove px

 y = y.substr(0,y.length-2); Remove px

 x = Number(x); Convert to number

 y = Number(y); Convert to number

 delx = x - statesx[i]; Calculate difference with the x offset

(continued)

Chapter 9 US States Game: Building a Multiactivity Game

368

Table 9-2.  (continued)

Code Line Description

 dely = y - statesy[i]; Calculate difference with the y offset

 deltax.push(delx); Add to deltax array

 deltay.push(dely); Add to deltay array

 } Close for loop

var averagex = doaverage(deltax); Calculate average of all x differences

var averagey = doaverage(deltay); Calculate average of all y differences

 for (i=0;i<nums;i++) { Iterate

 �if ((Math.abs(averagex - deltax

[i])>tolerance) || (Math.abs

(averagey-deltay[i])>tolerance)) {

Check if x difference or y difference is bigger than

tolerance from the respective average

 break; If so, leave loop

 } Close clause

 } Close for loop

 if (i<nums) { Did the loop break prematurely?

 �questionfel.feedback.value =

names[i]+" and maybe more out of

position";

Set feedback to display the state that was found

to be out of position

 } Close clause

 else { Else loop did not end prematurely; could put in

check on Hawaii and Alaska here

questionfel.feedback.value = "GOOD"; Display feedback

 } Close clause

} Close checkpositions function

function doaverage(arr) { Header for doaverage function; parameter

is an array

 var sum; Used as accumulator in computation

(continued)

Chapter 9 US States Game: Building a Multiactivity Game

369

Table 9-2.  (continued)

Code Line Description

 var i; For indexing

 var n = arr.length; Length of array

 sum = 0; Initialize to zero

 for(i=0;i<n;i++) { Iterate over elements

 sum += arr[i]; Add the ith value

 } Close for loop

 return (sum/n); Return sum divided by number n

} Close doaverage function

function setupjigsaw() { Header for setupjigsaw function

 doingjigsaw = true; Set flag to true

 �stateelements[choice].style.

border="";

Remove any previous border

 var i; For indexing

 var x; For x values

 var y; For y values

 var thingelem; Reference state element

 for (i=0;i<nums;i++) { Iterate over states

 �x = 100+Math.floor

(Math.random()*600);

Choose random value for x

 �y = 100+Math.floor(Math.

random()*320);

Choose random value for y

 thingelem = stateelements[i]; Set i th element

thingelem.style.top = String(y)+"px"; Position for top

thingelem.style.left =String(x)+"px"; Position for left

thingelem.removeEventListener

('click',pickstate,false);

Remove event handling

(continued)

Chapter 9 US States Game: Building a Multiactivity Game

370

Table 9-2.  (continued)

Code Line Description

 } Close for loop

 d.onmousedown = startdragging; Set up event handling

 d.onmousemove = moving; Set up event handling

 d.onmouseup = release; Set up event handling

 var df = document.createElement('div'); Create div

 df.id = "fullpage"; Give it the ID

 bodyel.appendChild(df); Add to body

questionfel.question.value = ""; Clear out question field

questionfel.submitbut.value = "Save

& close jigsaw";

Change the label on the submit button

questionfel.feedback.value = " "; Clear out feedback field

 questionfel.style.zIndex = 100; Set form on top

} Close setupjigsaw function

var d = document; Holds document

var ie= d.all; The Internet Explorer check; note that application has

not been checked for latest Internet Explorer version

var mouseDown = false; Initialize flag to false

var curX; Current x

var curY; Current y

var adjustX; Used for dragging

var adjustY; Used for dragging

var movingobj; The object being dragged

function release(e){ Header for release function

 mouseDown = false; Set flag back to false

 checkpositions(); Invoke check for puzzle being done

(continued)

Chapter 9 US States Game: Building a Multiactivity Game

371

Table 9-2.  (continued)

Code Line Description

}; Close release function

function startdragging(e) { Header for startdragging function

 var o; Used to calculate offset

 var j; Used to hold reference to element

 var i; For indexing

 �curX = ie ? e.clientX+d.body.

scrollLeft : e.pageX;

Compute location of cursor in x

 �curY = ie ? e.clientY+d.body.

scrollTop : e.pageY;

Compute location of cursor in y

 for (i=0; i<nums;i++) { Iterate over states

 j = stateelements[i]; Get the ith element

 o = offset(j); Determine offset

if (curX >= o.x && curX <= o.x +

j.width && curY >= o.y && curY <=

o.y + j.height)

Check if mouse over the ith element

 { break; } If so, leave for loop

 } End of clause

 if (i<nums) { Was for loop exited prematurely?

 movingobj = stateelements[i]; Set up the ith as the moving object

 adjustX = curX- o.x; Amount in x piece is offset from mouse cursor

 adjustY = curY- o.y; Amount in y piece is offset from mouse cursor

 mouseDown = true; Set flag to true: object in motion

 } Close clause for mouse over an object

} Close startdragging function

function moving(e) { Header for moving function

 if (!mouseDown) return; If no object is being moved, return

(continued)

Chapter 9 US States Game: Building a Multiactivity Game

372

Table 9-2.  (continued)

Code Line Description

 if (ie) Check if ie flag set

 �draw(e.clientX+d.body.scrollLeft,

e.clientY+d.body.scrollTop);

Draw using these values

 else Else

 draw(e.pageX, e.pageY); Draw using these values

} Close moving function

function draw(x, y) { Header for draw function; this moves/drags the

state

 var js = movingobj.style; Extract point to the style

 js.left = (x - adjustX) + "px"; Change the style to new x (left) value

 js.top = (y - adjustY) + "px"; Change the style to new y (top) value

} Close draw function

function offset(obj) { Header for offset function; adds in all offsets of

obj from ancestors

 var left = 0; Initialize left

 var top = 0; Initialize top

 if (obj.offsetParent) Is there a parent?

 do { Then

 left += obj.offsetLeft; Increment left

 top += obj.offsetTop; Increment top

 �} while (obj = obj.offsetParent); Keep going if there is a parent

 return {x: left, y: top}; Return array with the left and top values

} Close offset function

</script> Closing script tag

</head> Closing head tag

(continued)

Chapter 9 US States Game: Building a Multiactivity Game

373

Table 9-2.  (continued)

Code Line Description

<body id="body" onLoad="init();"> Body tag, with onLoad set to init();

<button onClick="spread();">Spread

out states </button>

Button to spread out states

<button onClick="restore();">Restore

original /compress map </button>

Button to restore original map

<button onClick="setupfindstate();">

Find the state </button>

Button to start Find the state task

<button onClick="setupidentifystate

();">Name the state</button>

Button to start Name the state task

<button onClick="setupjigsaw();">

Do jigsaw</button>

Button to start jigsaw

<button onClick="restoreprevious

jigsaw();">Restore last jigsaw in

process </button>

Button to restore saved jigsaw

<h1>USA</h1> Heading onscreen for the USA puzzle

<form id="questionform"

name="questionform" onSubmit="return

checkname();">

form tag, with onSubmit set to checkname call

State name: <input type="text"

name="question" value=" "

size="40"/>

Label and place for state name

<input name="submitbut" type="submit"

value=" " size="30"/>

Submit button; value now empty

Feedback: <input type="text"

name="feedback"

value=" " size="40" />

Label and place for feedback

</form> Closing form tag

</body> Closing body tag

</html> Closing html tag

Chapter 9 US States Game: Building a Multiactivity Game

374

�Testing and Uploading the Application
The project can be tested locally (on your home computer) using Chrome and also

Firefox, although at one point, as I have mentioned, that was not true. This application

requires the 50 files representing the states, so be sure and upload them as well (or

whatever files correspond to the parts of the map for your application).

�Summary
In this chapter, you learned how to build an educational game that featured different

types of questions for the player. The HTML5 features and programming techniques

included the following:

•	 Building a user interface involving text or visual prompts. Player

responses included clicking elements on the screen and typing

text. After entering jigsaw mode, player actions were dragging and

repositioning elements on the screen.

•	 Encoding and decoding information using split and join methods.

•	 Saving and restoring works-in-progress, including use of the

try...catch construct.

•	 Reusing techniques explained in the last chapter:

•	 Creating HTML markup dynamically to create the piece elements

on the screen

•	 Placing the jigsaw pieces randomly on the screen

•	 Determining the coordinate values that indicated how the

pieces fit together, and using those values, along with a defined

tolerance, to check if the puzzle was put together properly

•	 Manipulating the positioning of the piece elements to spread out

the pieces and restore them to their original locations

In Chapter 10, the final chapter, we explore the requirements for preparing a web

document that works on different devices, which is termed responsive design, and initial

steps toward making applications more widely accessible.

Chapter 9 US States Game: Building a Multiactivity Game

375
© Jeanine Meyer 2018
J. Meyer, HTML5 and JavaScript Projects, https://doi.org/10.1007/978-1-4842-3864-6_10

CHAPTER 10

Responsive Design
and Accessibility
In this chapter, you will:

•	 Learn techniques to make your interactive application usable on a

variety of devices

•	 Learn how to make your application accessible to people using only a

keyboard and a screen reader

•	 Make random multiple selections and, moreover, combine such tasks

•	 See additional examples of the dynamic creation of HTML markup

�Introduction
In the past, people used desktop or laptop computers, to use computer applications!

Now, many people want to view and use computer applications, including web pages,

on their tablets or smartphones. Moreover, many want to go to a website on all three

classes of devices and have similar experiences. They also may choose to modify

the dimensions of the window on a desktop or laptop or change the orientation of a

mobile device. Preparing a project made using HTML, CSS, and JavaScript to adapt

to the device (and the state of the device) is called responsive design. A different, but

similar, objective is to prepare a project to be accessible to a variety of users. One

critical challenge in this case is to make the application suitable for people with visual

disabilities using a screen reader and/or people restricted to using only a keyboard.

In this chapter, I describe certain techniques that will be helpful for these objectives,

focusing on specific examples.

376

Figure 10-1 shows the screenshot of an HTML and JavaScript project that adjusts to

the dimensions of the device. The program operates by cycling through a sequence of

images by making a stroke with a mouse on a desktop or laptop computer or with touch

on a tablet or a phone.

Figure 10-1.  Opening screen of reveal program

Chapter 10 Responsive Design and Accessibility

377

Pressing down on the mouse button and moving down or touching down with a

finger and moving down will cause the next picture to be revealed gradually until close

to the bottom. Figure 10-2 shows a picture in the process of being changed.

Figure 10-2.  Change underway from one picture to the next

When the mouse or finger is close enough, the whole next picture appears. Similarly,

the user/player can move the mouse or finger up the screen and get the previous picture

appearing. I encourage the reader to experiment with the source code.

Chapter 10 Responsive Design and Accessibility

378

Figure 10-3 shows a screenshot of a quiz game that can be operated by mouse or

touch or the keyboard alone. The set of four countries is selected randomly from the G20

countries and the corresponding capitals are mixed up, so you will see a different set

of items each time. The quiz can be taken using just the keyboard and a screen reader

program, with the tab key taking the player from item to item, making it suitable for

someone with limited or no visual ability and/or someone unable to use a mouse or

touch.

Figure 10-3.  Opening screen for country/capital quiz

Chapter 10 Responsive Design and Accessibility

379

The Action and Score fields indicate the performance so far. The boxes do change

color and move to next to the matched box to make it more interesting for the visually

able. The yellow/gold color is used when a match is correct. As indicated in the

instructions, a video is played when the player correctly makes four matches. Figure 10-4

shows a screenshot.

Figure 10-4.  Screenshot successful completion of quiz

The video has sound so the visually impaired gets the reward as well.

Chapter 10 Responsive Design and Accessibility

380

Note S creen readers are complex and provide options for customizing use.
One screen reader I used “spoke” the names of the countries and capitals by
themselves but another added the term “group,” which was tiresome. It is possible
to use the Tab key with the Shift key to go back and forth hearing the country
and capital names. However, screen readers do read the whole screen, including
everything on my browser toolbar and this was repeated when clicking on the
Tab key past the end of the document. My example shows how to include Tab
information in dynamically generated HTML markup. I strongly recommend that
when you continue your exploration of the use of screen readers and keyboard
operation, study static HTML pages first and then move on to programs with
dynamically generated HTML elements.

�Critical Requirements
Before going into specific technical features, it is important for developers to consider

the most important target audience of a planned application and the feasibility of the

application in different situations. There is a notion called mobile first that recommends

that the best approach if something is to be available on a mobile device is to design

and plan the mobile implementation first as opposed to designing and implementing

for a desktop and then making adjustments. Starting with the problem specification,

including the most common device and user, and formulating a solution is a good

strategy. Teachers and book authors often do something quite different: start with

concepts and features we want to explain and design what we believe are interesting

programs that use the features.

When you’re designing a web application, it is important to consider that certain

programs, such as ones featuring geolocation, are best for mobile. In contrast, a program

requiring considerable text entry is best suited for desktops and laptops. A jigsaw puzzle

is not for the visually impaired. However, the country/capital quiz, which I originally

made for mouse or touch, can be adapted for keyboard operation. Thinking about

different screens and different audiences can be a valuable way to determine what is

critical for your application and the process of working toward responsive design and

improving accessibility can benefit all audiences.

Chapter 10 Responsive Design and Accessibility

381

In this chapter, I focus on adapting to screen dimensions, ensuring that touch works

in addition to or in place of a mouse, and supporting screen reader and keyboard-only

operation for at least some applications. I also wanted to allow the user to resize and

resize again the window to arbitrary width and height.

I will mention briefly features that can be useful for a variety of websites, generally

having a static design.

�Screen Size and Dimension
You may expect to see code that checks for specific devices or device types by name,

but that is not the recommended approach for many situations. Instead, if the critical

properties to examine include screen width and screen height, then these measurements

are checked directly. There are various ways to do that in HTML element properties,

CSS rules and directives, and JavaScript code. You can learn, or at least be introduced to,

many of the details in the HTML, CSS, and JavaScript features section.

�Touch
Mobile devices typically do not have a mouse but instead depend on touch. The

interpretation of a touch as a mouse click comes “for free,” that is, no additional coding is

required and will be demonstrated in the Quiz example. The Reveal application, which

is based on a mouse down, mouse move, and mouse up sequence of operations requires

JavaScript code to support touch. The technique is to set up the touch events to simulate

the appropriate mouse events.

�Screen Reader and Tabs
A variety of screen reader tools exist. I used the built-in VoiceOver feature available

on my iMac running MacOS High Sierra to test the quiz program. People with visual

impairments and also people unable to operate a mouse need everything to be done

through the keyboard. This includes providing the coding to support the use of the Tab

key. The general advice for best support of screen reader and keyboard is good overall

organization, dividing the text into smaller pieces, and providing labels for what the user

cannot see.

Chapter 10 Responsive Design and Accessibility

382

�HTML, CSS, and JavaScript Features
HTML, together with CSS, provides ways to support responsive design and accessibility.

In situations involving more interactive and dynamic behavior, it may be necessary to

use JavaScript and I will focus on the JavaScript techniques for the examples.

�Meta Tags
The meta tag provides information about the document for the browser, for search

engines, and other web programs. Nothing is displayed. The charset meta tag

<meta charset="UTF-8">

specifies what character set is to be used. The UTF-8 designation is the default and

indicates the one- to four-byte Unicode standard. The intent in Unicode is to support

all the world's languages, and though that may not quite be the case, most languages,

including Japanese and Chinese, are supported. Even though Unicode is the default,

a warning message may still be displayed on the web console in the absence of this

meta tag, so including it will prevent seeing that message if you do go to the web

console.

The following meta tag is recommended to set the width to the device width:

<meta name="viewport" content="width=device-width, initial-scale=1.0">

I use the following for the Reveal example to allow the user some ability to scale the

window on mobile devices. This is applicable just to mobile devices.

<meta name="viewport"

content="width=device-width, user-scalable=yes, initial-scale=1.0, minimum-

scale=1.0, maximum-scale=2.0" />

If image or video elements are not given width or height attribute settings or given

fixed amounts, making the window smaller will result in scrolling. Vertical scrolling

is considered acceptable, but horizontal scrolling is not. The next section describes

techniques to produce the desired effects.

Chapter 10 Responsive Design and Accessibility

383

�HTML and CSS Use of Percentages and Auto
It is a standard practice to specify the width and the height in pixels for elements such

as img. If just one is specified using HTML for the element in the body element, the

other is modified to maintain the aspect ratio. In the style section, using CSS, the

term auto can be used. This is the default, but I like to mention it explicitly mainly as a

reminder to me.

A variation on specifying width or height in pixels is to specify a dimension as

a percentage of the containing element. The containing element could be the body

element or a div or a semantic tag or something else. The default width dimension for an

element with block display, such as a div, is 100% of the screen. It is possible to specify

another percentage, say 50% or 80%. An example would be to include in the body

This would set the image to have a width taking up 50% of the screen with the height

whatever preserves the aspect ratio. In the style section, either of these

#animal {width:50%; height: auto;}

#animal {width:50%;}

would produce the same effect.

If the application window is manipulated (say, on a desktop) to be shorter than the

calculated height, then the image would be cut off and a scroll bar would appear for

vertical scrolling. If the desired effect is to put a bound on the width (or height), but not

stretch the image beyond its original dimension, the max-width or max-height attribute

can be used. Generally speaking, vertically scrolling is accepted more than horizontal

scrolling so just specifying the width or the max-width is frequently offered as the way

to achieve responsiveness. This is the approach I used for the reward video in the

countries/capitals quiz.

The percentages can be used with width and/or max-width to set up a grid layout for

elements. I encourage you to experiment with these features. The TRY-IT feature of many

W3Cschool examples is helpful.

You will see how I use JavaScript to modify the width and the height.

Chapter 10 Responsive Design and Accessibility

384

�CSS @media
Web developers can set @media queries in the style element. These provide a way to

check on attributes of devices and designate style directives for certain conditions. For

example, on my Purchase website, I designate certain elements as being in a class I

name col. If the screen is wide enough, I want these elements spaced across the window

as columns. However, if the screen width is small, I do not want to require horizontal

scrolling, but instead have the col elements be displayed vertically with the assumption

that users will scroll vertically. The following @media directive produces this effect:

@media all and (max-width: 640px)

 {.col {display: block; width: 100%;}}

As was mentioned earlier, this is the technique suggested for testing for a narrow

device such as a phone. The @media feature also can be used to specify distinct

formatting for screen for computers and devices, the term print for printing out the web

page and speech for screen readers.

A @media query can have the modifiers not and only. For example,

@media only screen and (max-width: 600px) {

 body {

 background-color: lightblue;

 }

}

produces a background color of lightblue (this is one of the known color names (see

https://www.w3schools.com/Colors/colors_names.asp) for everything in the body

element for use on screens. I refer you to https://www.w3schools.com/CSSref/css3_

pr_mediaquery.asp for more examples and explanations.

�The HTML alt Attribute and Semantic Elements
The alt attribute for an img element provides information for a screen reader. The value

of the alt attribute will be displayed if the file is missing or slow to download. Use of alt

elements is recommended in normal cases and programs that check accessibility will

indicate any img tags without alt elements. Thinking out what the alt attribute can be

an important exercise in developing a web page. Please note that my code for this example

does not display the img elements, which are only used as a way to ensure that the images

are fully downloaded. Therefore, I did not think it appropriate to include the alt attribute.

Chapter 10 Responsive Design and Accessibility

https://www.w3schools.com/Colors/colors_names.asp
https://www.w3schools.com/CSSref/css3_pr_mediaquery.asp
https://www.w3schools.com/CSSref/css3_pr_mediaquery.asp

385

Semantic elements can provide information that may be used by screen readers. The

terms header, footer, main, section, article, and so on are meaningful when working

with other people on large projects. They do not have specific formatting, which must be

supplied.

�HTML tabIndex
People dependent on a screen reader or unable or uncomfortable using a mouse or

touch depend on using the Tab key to go through a document. The tabIndex attribute

can be set for any element. Pressing the Tab key takes the user to the next element in tab

order (proceeding in numerical order, low to high). Pressing the Tab key and the Shift key

reverses direction. The tabindex for an element can be set when preparing the HTML

document or produced by coding when creating HTML markup dynamically. In the

quizTab application, I included the statement

d.innerHTML = (

"<div tabIndex='"+String(2+i)+"' class='thing'

id='"+uniqueid+"'>placeholder</div>");

This code produces successive values for the tabindex for the country names.

The tabindex can be changed during the operation of a web page, although I did

not do this in my example. Playing (taking) the quiz does mean going through the items

multiple times and this does mean hearing the directions again, and also going up to

the address field of the browser again and, in some cases, hearing all the active sites

represented by tabs in the browser.

�JavaScript Use of Width and Height Properties
The browser for any computer or device will adapt the line width of text to fit the

window. However, I also wanted to adapt the font size in the instructions. The

instructions are displayed using a font size that my code selects based on a calculation.

The fontsz array is set using the statement:

var fontsz = ["14px","16px","18px","20px","24px"];

Chapter 10 Responsive Design and Accessibility

386

The size of the font is set in the init function using the cwidth variable that has been

assigned the window.innerWidth. The code is

 fs = Math.floor (cwidth/200);

 fs = Math.min(fs,4);

 bodyel.style.fontSize = fontsz[fs];

The challenge I set myself for the Reveal example was for the images to fit within

the window without any scrolling, while retaining the proportions. The attributes I

used include window.innerWidth and window.innerHeight for the window, and width,

naturalWidth, height, and naturalHeight for the images. The “natural” attributes

represent the original dimensions of an image. They cannot be changed. For the Reveal

example, I had made sure all the images have the same dimension, so I only needed to

do one set of calculations. The code checks that the width was less than the screen width

and adjusted the height, and then made sure the height was less than the screen height

and adjusted the width. You can go back to Chapter 8 for a variation on this involving

calculating values for use in the drawImage method.

�Creating Elements Dynamically
The sequence of images for the Reveal example is implemented dynamically by drawing

each into a canvas element. For any work involving images or other media on the web,

it is critical to make sure the files are completed downloaded. I accomplish this by

including img elements in the body but setting the visibility to be hidden in the style

section. Then, my code invokes a function named init to do all the work of creating

the canvas elements, drawing each image into its canvas element, and drawing the first

image into the canvas set up in the body.

The countries/capitals quiz also creates elements dynamically. These are

rectangular shapes holding the names of the countries and capitals. The HTML

markup is created with attributes set for id, class, and tabindex. The id values hold

the index into the facts array and is used to determine if the player has correctly

matched a country and a capital.

Chapter 10 Responsive Design and Accessibility

387

�Choosing From List
The Quiz example makes random choices for two situations. It is straight-forward how

to make one random choice. However, for this program, I need to make four random

choices of country/capital pairs from the facts array on 20 countries, but without

allowing repetition. Then, for each country and capital pair, since I do not want each

capital name to be opposite its country name, I need code to make random choices

for the positioning of each capital from among the four slots representing positions in

the second column. This also needs to be done without repetition. Note: It may be the

case that a capital does end up opposite its country, but it won’t happen most of the

time. See the placement of Mexico City, Ankara, Washington, D.C., and Buenos Aires

in Figure 10-3.

My first step toward addressing this problem is to make the facts array hold

something to tell me if a fact has been taken. The facts array is an array of arrays and the

inner arrays have three elements: country, capital, and true/false. A false setting means

the fact has not been selected and true means it has. The slots array will hold indices

for the four capital names. I will use an initial setting of -100 to indicate a slot has not

been taken. It actually could be any number less than zero. When a slot is chosen, the

corresponding value in the slots array is set to the index value of the country/capital in

the facts array. Do note that I could use any non-negative number here, because I (my

code) does not use the value, but I was thinking about possible future applications.

The coding construct that I use for both situations is a do/while loop. The do/

while construct can be used in many situations so try to keep it in mind. Describing

it in general terms: the code between brackets is invoked at least one time. Then the

condition in the parentheses following the term while is evaluated. If it is true, the

code in the brackets is executed again. There can be multiple statements between the

brackets. A pseudocode way to think of it is

do { one or more statements }

 while (repeat if this condition is true)

The check selecting facts is done by this code:

do {c = Math.floor(Math.random()*facts.length);}

 while (facts[c][2]==true)

Chapter 10 Responsive Design and Accessibility

388

The assignment to the variable c will be repeated if the fact represented by in the

subarray facts[c] has already been chosen.

The analogous check on picking a slot is done by this code.

do {s = Math.floor(Math.random()*nq);}

 while (slots[s]>=0)

Values indicating that the position has been taken are indicate by slots[s] being

greater than or equal to zero, so the random choice will be repeated if the slot has

already been taken.

�Mouse Events, Touch Events, and Key Events
There are two main issues to address for responsive design. I have described checking

and modifying the elements to fit the window sizes. The second consideration is

providing for touch as opposed to mouse events. The handling of touch events is done

by simulating mouse events. The mouse events have, presumably, been defined. As I

already mentioned, certain touch events are handled without any extra programming.

These are simple events such as clicking on an element. However, events such as

mousedown, mousemove, and mouseup need to be translated. This is because the exact

location of the mouse or touch is needed for calculations to draw from the source canvas

to the displayed canvas.

In the init function, the addEventListener method is involved for five events. If

this code is executed on a device without some of these events, there is no problem in

referencing any event that cannot occur.

 canvas.addEventListener("mousedown",startreveal,true);

 canvas.addEventListener("touchstart", touchHandler, true);

 canvas.addEventListener("touchmove", touchHandler, true);

 canvas.addEventListener("touchend", touchHandler, true);

 canvas.addEventListener("touchcancel", touchHandler, true);

The touchHandler function performs the task of determining which mouse event is

to be simulated (using a switch statement), creating the event (with new MouseEvent),

and then dispatching it. The MouseEvent function uses an associative array (also called a

dictionary) in which certain attributes are set. There are other attributes that I let assume

the default values for this example.

Chapter 10 Responsive Design and Accessibility

389

function touchHandler(event)

{

 var touches = event.changedTouches;

 if (touches.length>1) {

 return false;

 }

 var first = touches[0];

 var type = "";

 switch(event.type)

 {

 case "touchstart": type = "mousedown"; break;

 case "touchmove": type="mousemove"; break;

 case "touchend": type="mouseup"; break;

 default: return;

 }

 var simulatedEvent = new MouseEvent(type,{

 screenX: first.screenX,

 screenY: first.screenY,

 clientX: first.clientX,

 clientY: first.clientY

 });

 first.target.dispatchEvent(simulatedEvent);

 event.preventDefault();

}

Note T he constructor MouseEvent is relatively new and replaces the use
of document.createEvent("MouseEvent"), which is now marked as
deprecated, meaning its use is discouraged and may not be recognized in the
future. Changes in tools are something we need to accept. In fact, the new
approach has a significant advantage over the old one: the use of an associative
array for the arguments, instead of a long sequence of parameters indicated by
position, with most of them taking the default values.

Chapter 10 Responsive Design and Accessibility

390

Notice that nothing happens if there is a multi-touch gesture and note also that any

default action is prevented. I know of at least one commercial solitaire game—an iPad

app—that does not do this and so the whole board may move when moving a card.

Independent of the issue of mouse versus touch: nothing happens if the user in the

Reveal program presses down on with mouse or with a finger to the right of the image or

below the image (further down the screen). This bad behavior is ignored by use of the

following code in the startreveal function:

var startxy = getCoords(ev);

 if (startxy[0]>pwidth) return;

 if (staryxy[1]>pheight) return;

Similarly, if the player clicks on two country names or two capital names in the Quiz

application, the program supplies no special feedback, but does place the second item

next to the first. It will not be considered a correct answer because the two id values will

not match.

You must decide when building your own application, what feedback, if any, to

supply in cases that we can describe as bad behavior.

For the Quiz example, the event handling of a touch (tap) event is interpreted

as a mouse click by phone and tablet devices. However, I set myself the challenge

of supporting keyboard operation. What I do is set up the keyup event to invoke my

pickelement function, but in that function, do a return if the keycode is 9, the keycode

for Tab. So, the player using the keyboard would tab to each of the countries and capital

items, hear the screen reader say the names, and press Return to pick an item, or tab to

the next.

�Building the Reveal Application and Making
It Your Own
The Reveal program starts with the following sequence of events and actions.

	 1.	 When the document is fully loaded, including the images, the

init function is invoked. The init function is invoked following

a reload and a resize by the player. Note that the images are not

visible because of a directive in the style element.

Chapter 10 Responsive Design and Accessibility

391

	 2.	 The init function determines the dimensions of the window and

uses that information to choose the size of the font.

	 3.	 The init function invokes the setupimages function.

	 4.	 The setupimages function does calculations to make sure the

images fit into the window, maintaining the aspect ratio. It creates

a canvas element for each image.

	 5.	 Returning to the init function, the mouseDown and all touch

events are set up. The first image is drawn into the canvas element,

drawing from a canvas to a canvas. The next and prev variables

are set.

The action of revealing the next picture is handled by the functions startreveal,

revealing, and stopreveal, with the called and calling relationships indicated in

Table 10-1. I made the decision to allow the user to swipe up or down and change

direction. I also decided to complete the transition if the vertical level was within a fudge

factor of the top or bottom. My intentions are realized by the nested if/else statements

in the program.

Table 10-1.  Functional Relationships for Reveal

Function Invoked By Invokes

init The onload and onresize attributes in the body tag setupimages

setupimages init

touchHandler Call of addEventListener in init

getCoords startreveal, revealing

startreveal Call of addEventListener in init and in stopreveal getCoords

revealing Call of addEventListener in startreveal getCoords

stopreveal Call of addEventListener in startreveal and direct

call in revealing

Chapter 10 Responsive Design and Accessibility

392

Table 10-2.  Code for Reveal Program

Code Description

<!DOCTYPE HTML> Header

<html> html tag

<head> head tag

<title>Reveal next</title> The complete title element

<meta name="viewport" Start of viewport

content="width=device-width,

user-scalable=yes,

initial-scale=1.0, minimum-scale=1.0,

maximum-scale=2.0" />

Indicates treatment of user changes

<meta charset="UTF-8"> Specifies the charset to be Unicode

<style> Style tag

body { Directive for body

 font-family: Garamond, serif; Font is Garamond, if available, otherwise serif

 font-size: 24px; Note size may be changed

 overflow: hidden; No overflow and no scrolling if too big

 } Close body directive

div#images {display:none;} Do not display any images; images used to draw

into canvas elements

</style> Close style element

<script> Start of script element

var ctx; Will hold context for canvas elements

var fudge = 40; Do not require user to go all the way up or all the

way down for the next image to appear; this is

a “fudge factor,” meaning it is to give the user a

small amount of room

(continued)

Table 10-2 shows the code with comments for the reveal program.

Chapter 10 Responsive Design and Accessibility

393

Table 10-2.  (continued)

Code Description

var canvas; Will hold canvas

var pwidth; Width of the pictures

var pheight; Height of the pictures

var cwidth; Window width

var cheight; Window height

var current = 0; Start with 0th picture

var prev = 3; Start with the previous being the picture at index 3

var next = 1; The next picture is at index 1

var rect; Used for getting mouse coordinates

var revealflag = false; Flag

var lastdrawn; Keeps track of last picture

var lasty; The last y value

var moving = false; Set to indicate moving mouse

var canvases = []; Will hold canvases for all the pictures

var fontsz = ["14px","16px","18px",

"20px","24px"];

The possible font sizes

function init() { Header for init function

 var fs; Used to determine font size

 �canvas=document.

getElementById("canvas");

Pointer to the canvas element

 �bodyel = document.

getElementById("body");

Pointer to the body element

 ctx = canvas.getContext("2d"); Context for the canvas

 ctx.font = "24px serif"; Default font and size

 cwidth = window.innerWidth; Width of window

(continued)

Chapter 10 Responsive Design and Accessibility

394

Table 10-2.  (continued)

Code Description

 cheight = window.innerHeight; Height of window

 fs = Math.floor (cwidth/200); Calculate for font size

 fs = Math.min(fs,4); Minimum is 4

 bodyel.style.fontSize = fontsz[fs]; Set font size of instructions in the body to be fs

element of fontsz array

 canvas.width = cwidth; Set canvas width

 canvas.height= cheight; Set canvas height

 �rect = canvas.

getBoundingClientRect();

Used for determining mouse coordinates

var noOfImgs = document.

getElementsByTagName('img').length;

Determines the number of img elements in

document

 setupimages("noodles", noOfImgs); Invoke function that will set up the image (picture)

canvases after performing any scaling

 canvas.addEventListener("mousedown",

 startreveal,true);

Set mousedown event

 canvas.addEventListener("touchstart",

 touchHandler, true);

All touch events invoke touchHandler

 canvas.addEventListener("touchmove",

 touchHandler, true);

 canvas.addEventListener("touchend",

 touchHandler, true);

 �canvas.addEventListener

("touchcancel",

 touchHandler, true);

 ctx.drawImage(canvases[0],0,0); Draw the first (0th index) picture into the canvas

 current = 0; Set current; this and the next two statements are

necessary for init being called by onresize

(continued)

Chapter 10 Responsive Design and Accessibility

395

Table 10-2.  (continued)

Code Description

 prev = 3; Set prev

 next = 1; Set next

} Close init

function setupimages (base, lim){ Header for setupimages function; the base holds

the start of the names of the images and lim

indicates the number of images

 var dref; Reference to first image; this one is used to

calculate the scaling factor

 var can; Will point to each of the canvases

 var canctx; Will hold the context for each canvas

 canvases = []; Will hold the created canvases, with the images,

all scaled to the appropriate size; you can think of

these as buffers holding the images

 var img; Will hold each img in turn

 �dref = document.

getElementById("dummy");

Get reference to the first image

 if (dref.naturalWidth) { This provides the original width of the image

 �dref.width = dref.naturalWidth; Set width to this value

 �pratio = dref.naturalHeight/

dref.naturalWidth;

Calculate aspect ratio

 } Close if

 else { Less general when naturalWidth absent, which

may be the case with some browsers

 �pratio = dref.height/dref.width; Calculate ratio

 } Close else

(continued)

Chapter 10 Responsive Design and Accessibility

396

Table 10-2.  (continued)

Code Description

 �dref.width = Math.min(dref.

width,cwidth-fudge);

Now possibly reset width

 dref.height = pratio * dref.width; Set the height to match the possibly modified width

 �dref.height = Math.min(dref.

height,cheight-fudge);

Now possibly modify height

 �dref.width = dref.height * (1/

pratio);

Set the width to match the possibly modified height

 pwidth = dref.width; Set variable for later use

 pheight = dref.height; Set variable for later use

 for(var i=1;i<=lim;i++){ References the image files by name, by adding

1,2,3,4 to base; this loop scales the images

(repeating the operation for the first one); note

also the items in the canvases array are at index

positions 0,1, 2, 3

 img = new Image(); Create an Image object

 img.width = pwidth; Set the width

 img.height = pheight; Set the height

 img.src=base+String(i)+".jpg"; Set the src using the base and a number

 can = document.

createElement("canvas");

Create a canvas

 can.width = cwidth; Set its width

 can.height = cheight; … and height

 canctx = can.getContext('2d'); Set canctx to be the context

 �canctx.drawImage(img,0,0,pwidth,

pheight);

Draw the image into this canvas

 canvases.push(can); Push into the canvases array

 } Close the for loop

(continued)

Chapter 10 Responsive Design and Accessibility

397

Table 10-2.  (continued)

Code Description

} Close setupimages function

function touchHandler(event) { Header for touchHandler

 var touches = event.changedTouches; Get array of touches

 if (touches.length>1) { If more than one

 return false; Return; don't do anything for multi-touch gestures

 } Close if

 var first = touches[0]; Take the first (and only) touch

 var type = ""; Initial setting

 switch(event.type) { Switch on type of event

 �case "touchstart": type =

"mousedown"; break;

Set type variable to be the corresponding mouse

event

 �case "touchmove":

type="mousemove"; break;

 �case "touchend":

type="mouseup"; break;

 default: return; Do nothing

 } Close switch

 �var simulatedEvent = new

MouseEvent(type,{

 screenX: first.screenX,

 screenY: first.screenY,

 clientX: first.clientX,

 clientY: first.clientY

 });

Create the MouseEvent of the calculated type;

set the locations from the locations of the touch

event

 �first.target.dispatchEvent

(simulatedEvent);

Dispatch event to be treated as actual event

 event.preventDefault(); Stop any default response for the touch event

(continued)

Chapter 10 Responsive Design and Accessibility

398

Table 10-2.  (continued)

Code Description

} Close touchHandler

function getCoords(ev){ Header for getCoords to pick up mouse position

 var mx; Will hold horizontal

 var my; Will hold vertical

 mx = ev.clientX-rect.left; The rect variable has been set; calculates mx

 my = ev.clientY-rect.top; Calculate my

 return [mx,my]; Return an array

} Close getCoords

function startreveal(ev){ Header for startreveal

 var startxy = getCoords(ev); Get the coordinates of the mouse

 if (startxy[0]>pwidth) return; No action if mouse or touch is to the right of

the image

 if (startxy[1]>pheight) return; No action if mouse or touch is below the image

 �lasty = Math.max(startxy[1],fudge); Start at least fudge distance from the top

 canvas.addEventListener("mousemove",

 revealing,true);

Set up mousemove

 canvas.addEventListener("mouseup",

 stopreveal,true);

Set up mouseup

 �canvas.removeEventListener

("mousedown",

 startreveal,true);

Stop listening for mousedown

 revealflag = true; Set flag

 } Close startreveal

(continued)

Chapter 10 Responsive Design and Accessibility

399

Table 10-2.  (continued)

Code Description

 function revealing(ev){ Header for revealing

 var slice; Will indicate how much to be drawn from next

picture (vertical amount)

 var curxy; Will hold mouse position

 if (!revealflag) return; If not in the reveal stage, return

 curxy = getCoords(ev); Get mouse coordinates

 cury = curxy[1]; Set cury

 if (moving){ Check moving flag

 if (cury>=lasty){ If it is further down than last

 if (cury<(pheight-fudge)){ If it isn’t in the bottom part

 �slice = Math.max(1,cury-lasty) Calculate the height

 �ctx.drawImage(canvases

[next],0,lasty,pwidth,

 slice,0,lasty,pwidth,slice);

Draw from the next canvas

 lastdrawn = next; Set up for next move

 lasty = cury;

 } Close if

 else { Go immediately to set up for next

 lastdrawn = next; Set lastdrawn

 stopreveal(ev); ev passed to be consist with being

eventhandler

 } Close else for cury<(pheight-fudge)

 } Close cury>=lasty

 else { Else cury< lasty, so moving up

 if (cury>fudge){ If still outside of fudge area

(continued)

Chapter 10 Responsive Design and Accessibility

400

Table 10-2.  (continued)

Code Description

 �slice = Math.max(1,

lasty-cury);

Calculate slice

 �ctx.drawImage(canvases

[prev],0,cury,pwidth,

 slice,0,cury,pwidth,slice);

Draw from prev image

 lastdrawn = prev; Set lastdrawn to prev

 lasty = cury; Set lasty

 } Close if

 else { Else within fudge area, so complete transition

 lastdrawn = prev; Set lastdrawn

 stopreveal(ev); Invoke stopreveal

 } Closes else for cury>fudge

 } Close else for cury>=lasty

 } Close if moving

 else { First mov

 moving = true; Set moving

 if (cury>=lasty){ Check direction

 prev = current; Moving up, so set prev

 if (cury<(pheight-fudge)){ Check if above fudge

 �slice = Math.max(1,cury-lasty); Set the slice

 �ctx.drawImage(canvases

[next],0,lasty,pwidth,

 slice,0,lasty,pwidth,slice);

Draw from next

 lastdrawn = next; Set lastdrawn

 lasty = cury; Set lasty

 } Close if above fudge

(continued)

Chapter 10 Responsive Design and Accessibility

401

Table 10-2.  (continued)

Code Description

 else { Else

 lastdrawn = next; Set lastdrawn

 stopreveal(ev); Immediately go to stopreveal; the ev passed to

be consist with being an eventhandler

 } Close else for cury<(pheight-fudge)

 } Close cury>=lasty for moving false

 else { Going up the image

 next = current; Set next

 if (cury>fudge){ If greater than fudge

 �slice = Math.max(1,

lasty-cury);

Calculate slice

 �ctx.drawImage(canvases

[prev],0,cury,pwidth,

slice,0,cury,pwidth,slice);

Draw slice

lastdrawn= prev; Set lastdrawn

lasty = cury; Set lasty

 } Close if above fudge

 else { Else (in fudge area)

 lastdrawn = prev; Set lastdrawn

 stopreveal(ev); Go immediately to stopreveal

 } Close else for if cury>fudge

 } Close else for cury>=lasty

 } Close else for if moving

} Close function

(continued)

Chapter 10 Responsive Design and Accessibility

402

Table 10-2.  (continued)

Code Description

function stopreveal(ev) { Header for stopreveal

 revealflag = false; Reset revealflag

 moving = false; Reset moving

 �ctx.drawImage(canvases

[lastdrawn],0,0);

Draw the complete image

 current = lastdrawn; Set current

 next = current+1; Increment next

 if (next==canvases.length) next = 0; If at the end, set next to 0

 prev = current-1; Set prev

 if (prev<0) prev=canvases.length-1; If prev too low, set to the last index

 �canvas.removeEventListener

("mousemove",

 revealing,true);

Stop listening for mousemove

 �canvas.removeEventListener

("mouseup",

 stopreveal,true);

Stop listening for mouseup

 �canvas.addEventListener

("mousedown",

 startreveal,true);

Set up event for startreveal

} Close stopreveal

</script> End script element

 <body id="body" onload="init();"

onresize="init();">

Body tag, with setting for onload and onresize

(continued)

Chapter 10 Responsive Design and Accessibility

403

Table 10-2.  (continued)

Code Description

 Mouse/touch down,

slowly drag mouse/finger down or up

the photo,

then mouse/touch up.

Instructions

 <canvas id="canvas" width="100%"

height="50%" >

Canvas; may be scaled

 �Your browser doesn't support canvas Standard message

 </canvas> Canvas end tag

<div id="images"> The div holding the images

 �<img src="noodles1.jpg"

id="dummy"/>

The first one is used for the scaling calculations

 </div> Close div

 </body> Close body

 </html> Close html

Chapter 10 Responsive Design and Accessibility

404

�Testing and Uploading the Reveal Application
The Reveal (I also call it uncover) application requires a set of images of the same

dimension, though that dimension does not need to be what I have for the girl-eating-

noodles. You can have a different number of images than the four that I have. This

is supported by the use of the document.getElementsByTagName invocation in the

setupimages function. Of course, if you choose to include other images, you will need to

do the call for the div holding the img elements in place of document.

�Building the Countries/Capitals Quiz and Making
It Your Own
The quiz show is set up by selecting four country capital pairs from the facts table using

Math.random and checking to be sure not to repeat any pair. Elements are created

dynamically for countries and capitals and the order of how the capitals appear in

the window is make random. These elements are created with tabIndex set. As each

element is created, addEventListener is invoked for the click event and the keyup event.

The functions with their relationships are shown in Table 10-3. Notice that there is no

touchhandler event because the click using touch events are properly interpreted by

browsers on devices. More generally, setting the tabIndex attribute provides the tab

functionality without any additional JavaScript coding.

Table 10-3.  Functional Relations for Quiz

Function Invoked By Invokes

init Action by the onload attribute in the body

tag

setupgame

setupgame init

pickelement Action by addEventListener multiple

times in setupgame

Chapter 10 Responsive Design and Accessibility

405

Table 10-4.  Code for the Country/Capital Quiz

Code Description

<!DOCTYPE html> Standard header

<html> The html tag

<head> The head tag

 <title>Quiz with Reward!</title> Complete title

<style> The style tag

country {position:absolute;left: 0px; top:

0px; border: 2px; border-style: double;

background-color: white; margin: 5px;

padding: 3px; visibility:hidden;}

Format country blocks

capital {position:absolute;left: 0px; top:

0px; border: 2px; border-style: double;

background-color: white; margin: 5px;

padding: 3px; visibility:hidden;}

Format capital blocks

#vid {position:absolute; visibility:hidden;

z-index: 0; max-width: 50%; height: auto;}

Make video hidden until time to play; set

limit on width

main {display:block;} Force line breaks before and after main

</style> Closing style tag

<script type="text/javascript"> Script tag

var facts = [Variable holding the information for the

quiz; the third place in the inner arrays

is used to indicate if the fact has been

chosen for this game

 ["China","Beijing",false],

 ["India","New Delhi",false],

 ["European Union","Brussels",false],

 ["United States","Washington, DC",false],

(continued)

The code with comments in shown in Table 10-4.

Chapter 10 Responsive Design and Accessibility

406

Table 10-4.  (continued)

Code Description

 ["Indonesia","Jakarta",false],

 ["Brazil","Brasilia",false],

 ["Russia","Moscow",false],

 ["Japan","Tokyo",false],

 ["Mexico","Mexico City",false],

 ["Germany","Berlin",false],

 ["Turkey","Ankara",false],

 ["France","Paris",false],

 ["United Kingdom","London",false],

 ["Italy","Rome",false],

 ["South Africa","Pretoria",false], Note: South Africa has three capitals;

I chose to go with Pretoria; it is a

matching game, so players will never see

the other two city names

 ["South Korea","Seoul",false],

 ["Argentina","Buenos Aires",false],

 ["Canada","Ottawa",false],

 ["Saudi Arabia","Riyadh",false],

 ["Australia","Canberra",false]

]; Close outer array of facts

var thingelem; Used for each block item

var nq = 4; Number of questions asked in a game

var elementinmotion; Used to indicate selected element to be

moved next to player’s match

var makingmove = false; Set to true while player choosing two

blocks

(continued)

Chapter 10 Responsive Design and Accessibility

407

Table 10-4.  (continued)

Code Description

var inbetween = 150; Spacing between columns

var col1 = 0; Start of first column

var row1; Set in init; start of first row

var rowsize = 60; Vertical space allocated for each item

var slots = new Array(nq); Hold the index into facts array for the

capital items

function init(){ Header for init function

 row1= .6* window.innerHeight; Set row1 as expression in total window

height; if height is too small, vertical

scrolling will be required

 setupgame(); Invoke setupgame

} Close init

function setupgame() { Header for setupgame

 var i; Used in for loops

 var c; Used in calculation of random choice

 var s; Used in calculation of candidate slot for

capitals

 var mx = col1; Starting x position

 var my = row1; Starting y position

 var d; Will hold reference to created element

for country

 var uniqueid; Used to hold all the generated IDs

 for (i=0;i<facts.length;i++) { Loop over all the facts

 facts[i][2] = false; Set as being unused

(continued)

Chapter 10 Responsive Design and Accessibility

408

Table 10-4.  (continued)

Code Description

 } Close for loop

 for (i=0;i<nq;i++) { Loop over all slots

 slots[i] = -100; Set slot value

 } Close for loop

 for(i=0;i<nq;i++) { Loop until nq distinct facts are chosen

 �do {c = Math.floor(Math.

random()*facts.length);}

Do gets a random value

 while (facts[c][2]==true) If this fact is taken, repeat the do clause

 facts[c][2]=true; Now, having chosen a fact not taken,

mark it as taken

 uniqueid = "c"+String(c); Generate an ID

 d = document.createElement('country'); Create an element

 d.innerHTML = (Set the innerHTML

"<div tabIndex='"+String(2+i)+"' class='thing'

id='"+uniqueid+"'>placeholder</div>");

… to be a div, class 'thing' to

respond to the style directive

 document.body.appendChild(d); Append to body (so it will be displayed)

 �thingelem = document.

getElementById(uniqueid);

Set thingelem to reference the newly

created element

thingelem.textContent=facts[c][0]; Make its context the country

thingelem.style.top = String(my)+"px"; Position it at the my vertical and…

thingelem.style.left = String(mx)+"px"; … mx horizontal position

thingelem.addEventListener('click',

pickelement);

Set up event handling for click

thingelem.addEventListener('keyup',

pickelement);

Set up event handling for keyup

(continued)

Chapter 10 Responsive Design and Accessibility

409

Table 10-4.  (continued)

Code Description

thingelem.style.visibility="visible"; Set the visibility to visible

 uniqueid = "p"+String(c); Now create a new unique ID

 d = document.createElement('cap'); Create an element

 d.innerHTML = (Set the innerHTML

 �"<div tabIndex='0' class='thing'

id='"+uniqueid+"'>placeholder</div>");

The div for the items; code will change

tabIndex

 document.body.appendChild(d); Append to the body so it will be visible

 �thingelem = document.

getElementById(uniqueid);

Set thingelem to reference this

element

 thingelem.textContent=facts[c][1]; Set its content

Put this thing in random choice from

empty slots

 do {s = Math.floor(Math.random()*nq);} Do set s to be a random value

 while (slots[s]>=0) If the current value of slots[s] is

greater than or equal to zero, it means

this slot is taken and so repeat the do

clause to get a new value s

 slots[s]=c; This slot has not been taken, so set it to

be the value c

 thingelem.tabIndex = String(6+s); Set its tabIndex

 �thingelem.style.top =

String(row1+s*rowsize)+"px";

Position it vertically, using the position

indicated by s

 �thingelem.style.left =

String(col1+inbetween)+"px";

All capitals have the same horizontal

positioning to be the second column

 �thingelem.addEventListener

('click',pickelement);

Set event handling for click

(continued)

Chapter 10 Responsive Design and Accessibility

410

Table 10-4.  (continued)

Code Description

 �thingelem.addEventListener

('keyup',pickelement);

Set event handling for keyup

 my +=rowsize; Increment my to go to the next row

 } Close the for loop

 document.f.score.value = "0"; Set the score to 0

 return false; Return, prevent any refresh of document

(may not be needed)

} Close setupgame

 function pickelement(ev) { Header for pickelement

 if (ev.keyCode ===9) {return;} Return immediately if keycode is tab

 var thisx; Will hold character string indicating

horizontal position

 var thisxn; Will hold the new horizontal position with

the px removed

 var sc; Score

 if (makingmove) { If makingmove true

 if (this==elementinmotion) { If this is the first item selected—that is,

same block clicked twice, treat as not a

good move and go back to waiting for a

first click

 �elementinmotion.style.

backgroundColor = "white";

Turn it white

 makingmove = false; Reset makingmove

 return; return

 } Close if

(continued)

Chapter 10 Responsive Design and Accessibility

411

Table 10-4.  (continued)

Code Description

thisx= this.style.left; The this block is a distinct second item

selected; get horizontal position

thisx = thisx.substring(0,thisx.length-2); Remove the px

thisxn = Number(thisx) + 115; Convert to number and add some space

elementinmotion.style.left =

String(thisxn)+"px";

Reset the elementinmotion to move

element

 elementinmotion.style.top = this.

style.top;

Set vertical coordinate to save vertical

level

makingmove = false; Reset makingmove

 if (this.id.substring(1)

 ==elementinmotion.id.substring(1)) {

Now check if this is a good match by

comparing the part of the id string after

"c" or "p"

 �elementinmotion.style.backgroundColor =

"gold";

Set to gold

 this.style.backgroundColor = "gold"; Set to gold

 document.f.out.value = "RIGHT"; Output message

 sc = 1+Number(document.f.score.value); Increment score

 document.f.score.value = String(sc); Display score

if (sc==nq) { Check if this means nq have been

matched

 v = document.getElementById("vid"); If so, get the video

 �v.style.top = String(row1+4*rowsize+20)

+"px";

Locate just under the items; if height

is small, video will be off-screen and

require vertical scrolling to be visible; it

will be heard.

 v.style.visibility = "visible"; Make video visible

(continued)

Chapter 10 Responsive Design and Accessibility

412

Table 10-4.  (continued)

Code Description

 v.style.zIndex="10000"; Put on top of items (this is for any

changes putting the video on top; now it

is below blocks)

 v.play(); Play video

 } Close if sc==nq

 } Close if IDs match

else { Else (bad move)

 document.f.out.value = "WRONG"; Display wrong

 �elementinmotion.style.backgroundColor =

"white";

Set to white

 } Close else

 } Close if second item

 else { Else (first item selected)

 makingmove = true; Set makingmove flag

 elementinmotion = this; Save this reference for later use

 �elementinmotion.style.

backgroundColor="tan";

Set color

 } Close else

 } Close pickelement function

</script> Close script section

</head> Close head section

<body onLoad="init();"> The body tag; notice call to init upon

loading

<main tabIndex="1"> The main element, tabIndex set

<h1>G20 Countries and Capitals </h1> Heading

 Force line break

(continued)

Chapter 10 Responsive Design and Accessibility

413

Table 10-4.  (continued)

Code Description

This is a quiz for matching country and

capital.

There are 4 countries and 4 capitals.

Instructions

Click (or tab and then press enter)

to pick a country or capital and

then click (or tab and then press enter)on

corresponding capital or country.

There will be a video (with sound) if you

match all 4. You can tab through

all the elements repeated times.

Instructions, continued

<p> A paragraph tag

Reload for new game. </p> More instructions

</main> Close main element

<p> A paragraph tag

<form name="f" > A form element

Action: <input name="out" type="text"

value="RIGHT OR WRONG"/>

Will indicate results of player moves

Score: <input name="score" type="text"

value="0"/>

Score, starting with 0

</form> Close form

</p> Close paragraph

<video id="vid" controls="controls"

preload="auto" width="50%"

alt="Fireworks video">

Video tag; note alt

<source src="sfire3.webmvp8.webm"

type='video/webm; codec="vp8, vorbis"'>

Holds videos in different formats, starting

with webm; note: I stayed with the long

names for these files

<source src="sfire3.mp4"> The MP4 format

(continued)

Chapter 10 Responsive Design and Accessibility

414

Table 10-4.  (continued)

Code Description

<source src="sfire3.theora.ogv"

type='video/ogg; codecs="theora, vorbis"'>

The OGV format

Your browser does not accept the video tag. Standard message for older browsers

 </video> Close video

</body> Close body

</html> Close html

�Testing and Uploading the Countries/Capitals
Quiz Application
You can decide which countries to include in your list or, if you want to change the quiz

to something different, you need to formulate and create the pairs of strings defining the

content. You also can choose a different video to be the reward for successful completion

of the quiz. If you want the quiz to serve the visually impaired as well as others, you will

want to choose a video that includes loud, cheerful music.

�Testing and Uploading the Jigsaw Turning
to Video Application
In Chapter 8, you learned how to create a simple jigsaw puzzle game that turns into a

video clip when the jigsaw puzzle is complete. I have added to the jigsaw program the

enhancements discussed in this chapter for responding to touch and included it with the

source code for this chapter. You will not see anything different if you examine this code

on a desktop or laptop. However, if you upload the code to your own website along with a

base image and video files, you should see it work on mobile devices.

Chapter 10 Responsive Design and Accessibility

415

As I indicated in Chapter 8, be aware that the Apple operating systems on mobile

devices may require users to click the Play button for all videos. This is considered a

feature, not a bug, by Apple. Requiring a click does give the owners of the devices a

chance to prevent downloading of a video, which takes time and battery power and may

incur fees. I have discussed the issue of Chrome’s autoplay policy in Chapters 2 and 3.

For the jigsaw-to-video project, I would prefer transition from jigsaw to video to be

automatic and that is what it is on a desktop or laptop computer. You need to be aware of

this issue because there may be changes in the browsers in the future.

You make this game your own by using your own video, with the first frame extracted

as an image file to serve as the base.

�Summary
In this chapter, you explored issues critical for expanding the audience for your work.

The concerns for responsive design include adapting to the size and shape of

different screens as well as providing for touch as well as mouse actions. Certain HTML

and CSS features were described that were not used in the examples.

The concerns for accessibility include providing support for keyboard operation

when a mouse or touch is not feasible. This includes setting the tab index, which can

be done even when elements are created dynamically. Playing a video as the reward for

successful completion of a quiz works for the visually impaired if audio from the video is

present and appropriate.

The applications described here and the enhanced jigsaw turning into video are built

on everything you have learned in this book, including building elements dynamically,

working with arrays and images, and setting up events and event handling. I hope you

enjoyed the experience and have started building your own projects.

Chapter 10 Responsive Design and Accessibility

417
© Jeanine Meyer 2018
J. Meyer, HTML5 and JavaScript Projects, https://doi.org/10.1007/978-1-4842-3864-6

Index

A
Accumulator, 305
addListener function, 147
Add to 15 project

computerMove function, 210
CSS styling, 206
functions, 211
JavaScript arrays, 207–208
opening window, 204
player move, 209
requirement, 205–206
setUpBoard function, 209

Alt attribute, 384–385
Apple operating systems, 296, 415
Application programming

interface (API)
Google Maps (see Google Maps API)
map maker (see Map maker,

Google Maps)
map portal (see Google Maps API, map

portal)
Associative array, 139
Autoplay policy, 26

B
Bouncing video

animation
automatic scrolling, 93
clearInterval(tid), 90

ctx.clearRect(0,0,cwidth,cheight), 90
displacement value, 91
init function, 89
moveandcheck function, 90
setInterval(drawscene,50), 89
tid = setInterval(drawscene,50), 90
videobounceC program, 91
videobounceE program, 93
video element bouncing with less

restrictive checking, 94
application

changedims function, 116
testing and uploading, 116
v.currentTime attribute, 115
videobounceC application

code, 103–109
videobounceE program code, 110–115
VideobounceTrajectory

program code, 115
window.innerWidth and window.

innerHeight attributes, 116
body definition and window

dimensions
body element, 87
init function, 88–89
Math.min method, 88
video element, 87
video formats, 87
window.innerWidth and window.

innerHeight attributes, 87

https://doi.org/10.1007/978-1-4842-3864-6

418

HTML5, 79
movable video element, 97–98
Opera screen capture, 80
project history and critical

requirements, 86
smaller window, 82
stop-motion photography, 81
trajectory of virtual ball, 81
traveling mask, 98–101
user interface, 101
very small window, 83
video drawn on canvas, 95–96
window resize, running program, 84–85

C
Canvas graphics

drawshadowmask function, 142–143
grayshadow, 142
mouse movement, masking, 140
schematic with variable values, 143
shadow mask, 141–142
z-index values, 140

Cascading Style Sheets (CSS), 6
changescale function, 13
checkPosition function, 90–92, 348
clearshadow function, 146
closePath method, 7
computerMove function, 210
Constructor function, 28
Copy by reference, 48
Countries/capitals quiz game

application
code, 405–413
functional relations for, 404
testing and uploading, 414

creates elements dynamically, 386

critical requirements, 380
do/while loop, 387
facts array, 387
feedback, 390
keyboard operation, 390
opening screen for, 378–379
random choices, 387
screen size and dimension, 381
Sierra, 381
successful completion of, 379
touch, 381

Crease pattern, 227–228
Critical methods, 7
CSS @media, 384

D, E
2D context property, 6–7
distsq function, 42
Document object model (DOM), 87
dologo function, 11–12, 14
donext function, 236
Drop LatLng marker option, 136

F
facts array, 387
Family collage

Adobe Photoshop, 26
critical requirements

canvas element, 26
drag and drop operation, 26

CSS, JavaScript features, 27
end-user position, 24
final product, rearranged objects, 25
HTML5, 27
image application

clone(obj), 71

Bouncing video (cont.)

Index

419

createelements(), 58–60
distsq(), 60
drawheart(), 65–66
drawoval(), 69
drawpic(), 68
drawrect(), 74
drawstuff(), 74
drawvideo(), 63–64
dropit(ev), 73
event handling functions, 52
Heart(), 65
HTML5 family collage project, 53–54
HTML5 Logo project, 55–76
init(), 57
initialization, 52
loading(), 57–58
makenewitem(), 70–71
object definition methods, 52
outside(), 68
Oval(), 68
overheart(), 66–67
overoval(), 69–70
overrect(), 70
overvideo function, 62–63
Picture(), 64–65
Rect(), 69
removeobj(), 75
restart function, 56
saveasimage(), 75
startdragging(ev), 71–72
Videoblock function, 61
videoloaded function, 56–57

JavaScript object
constructor function, 28
external file, 29
family picture project, 27
method function, 27
types of objects, 28

manipulating object, 23
mouse over object

coordinate system, 42
outside function, 45
overcheck method, 42
overheart function, 43
overoval function, 42
overrect function, 42
overvideo function, 45–46
startdragging and

makenewitem, 42
opening screen, family pictures, 24
save canvas image

DataURL, 51
Firefox browser, 51
saveasimage function, 52

test and upload application, 77
user interface

clone function, 47–48
drawstuff function, 47
dropit function, 51
flypaper effect, 49
mouse cursor coordinates, 47
moveit function, 50
onClick attributes, 46
removeobj function, 46

fillStyle property, 8–9
Flypaper effect, 49
Frames, 95

G
Geolocation

application
functions, 211
project code, 212–220
testing and uploading, 221

goback function, 237

Index

420

Google Maps API
addListener, 138
associative array, 139
HYBRID map, 139
makemap function, 139–140
Map constructor method, 138
Map, LatLng, and Marker, 138
map portal

associative array, 177
event handling, 179
HTML document location, 176
HYBRID map type, 177–178
interface removed, 179
latitude and longitude

values, 176
makemap function, 176
myOptions array, 178
SATELLITE map type, 178
TERRAIN map type, 177
x1.png file, 179

mobile devices applications, 137
onLoad attribute, 138
portal construction, 139
pseudocode, 138
ROADMAP, 139
SATELLITE map, 139
TERRAIN map, 139

Graceful degradation, 3

H
Hint button, 186
HTML

Alt attribute, 384–385
tabIndex, 385
width/height in pixels, 383

HTML5 logo

body of document, 9–10
canvas element, 1
Chrome browser opening screen, 2–3
coordinate transformation, 10–12
dologo function, 11–12
drawing paths

canvas element, 6
closePath method, 7
2D context, 6
2D coordinate system, 7
hexadecimal format, 7
init function, 8
onLoad attribute, 8
sequence, 6

drawpath, fillStyle property, 7
factorvalue, 11
Firefox opening screen, 4
graceful degradation, 3
image of, 4–5
project code, 15–20
project function, 14
project history and critical

requirements, 4–5
range input element, 12–14
scaled down, 3
semantic tags, 1
slider feature, 3
testing and uploading, 21
text placement, 9–10
World Wide Web Consortium, 3

HYBRID map, 178

I
innerHTML attribute, 341
intersect function, 244, 253
Intersection, 244

Index

421

J
JavaScript arrays, 183
JavaScript object

constructor function
createelements function, 35
drawing, 37–38, 40, 42
heart, 33–34
Oval, 31
picture, 32
Rect, 30
Videoblock, 32–33
videomarkup, 35

Jigsaw video puzzle
application

code, 308–318
jigsaw-to-video project

functions, 307–308
testing and uploading, 318

desktop computer
feedback label, 294
nearly completed puzzle, 294
opening screen, 291–292
puzzle progress, 293
replaced pieces, 295
spread out pieces, 292–293
tolerance, 294
video with controls, 295–296

display attribute, 300
drawImage function, 299–300
endjigsaw function, 298
finger touches

accumulator, 305
checkpositions function, 304
deltax and deltay arrays, 304
doaverage function, 305
piecesx and piecesy arrays, 304
questionfel element, 305

release function, 304
tolerance, 304
video preparation, positioning,

and playing, 305–306
firstpkel variable, 300
init function, 298
iPhone and iPad

critical requirements, 297
jigsaw-puzzle-with-video-reward

project, 296
user interface construction, 296

makePieces function, 298–299
Math.floor, 300
Math.random, 300
mouse events

checkpositions function, 303
mouseDown variable, 303
moving function, 302–303
moving jigsaw pieces, 302
setupjigsaw function, 302
startdragging function, 303

sCTX canvas, 300
setupgame function, 298
setupjigsaw function, 298, 300, 301
testing and uploading, 414–415

K, L
kamih variable, 239
kamiw variable, 239

M, N
Map maker, Google Maps

API (see Google Maps API)
application

functions, 153
mapspotlight.html application

code, 154–164

Index

422

testing and uploading, 165
base location, 121, 125, 127
canvas graphics

drawshadowmask function, 142–143
grayshadow, 142
mouse movement, masking, 140
schematic with variable values, 143
shadow mask, 141–142
z-index values, 140

closest-in limit, 129
cursor, 144
distance and rounding values, 150–152
events

addListener, 147
changebase function, 149
CHANGE button, 149
checkit function, 147, 148
clearshadow function, 146
drawshadowmask function, 145
HTML coding, 149
init function, 145
mouseout event, 146
panning and zooming, 146
parallel structures, 149
pushcanvasunder function, 146
radio buttons, 149
showshadow function, 145
title indicating distance, 148

farthest-out view, 127–128
Greenland problem, 127
latitude and longitude

coordinate system, 131
distances between locations, 137
Drop LatLng marker option, 136
equator at Greenwich prime

meridian, 135
Greenwich prime meridian, 131

HTML5 application, 136
location, 122, 127
meridians, 131
parallels, 131
teardrop marker, 136
values, 131, 133
Wolfram Alpha, 134–135

opening screen, 119–120
satellite view, 129
semitransparent shadow, 122
shadow/spotlight, 121
slider, zoom, 122–123
zoomed in to limit, 130
zooming out and moving north, 124

Map portal, Google Maps
API (see Google Maps API, map portal)
application testing and

uploading, 201
click not close to any target, 169
content outline, 168
distances and tolerances, 181
hint button, 169, 172, 186
HTML5 markup and

positioning, 183–184, 186
image-and-audio combination, 170
mapmediaquiz.html file, 168
mediaquizcontent.js file, 168
opening screen, 168
project content, 179–180
project history and critical

requirements, 175
quiz application

code, 188–200
functions, 188

regular expressions, 182–183
video, audio, and image files, 167
zooming out, 170–172

MasterCard numbers, 182

Map maker, Google Maps (cont.)

Index

423

Math.floor method, 241
Math.min method, 88
Meta tag, 382
Mobile first, 380
mountain function, 241

O
Object oriented programming, 27–28
onChange attribute, 13
Open Source Miro Video Converter, 87
Origami directions

application
functions, 256
project code, 256–287
testing and uploading, 288

coordinate values, 238–240
crease pattern, 227
critical requirements, 233
first instructions, 225
fish throat photograph, 230
fish with throat fixed, 231
kami, 224
line drawings/images, 223
mountain/valley folds, 227
opening screen, 224
origami definition, 224
origamifish.html, 224
paused video, sink step, 228
photograph display, 254
sink fold, 227
skinny vertical line, 226
step after sink, 229
step line drawing functions

after making lips, 253
after wraparound steps, 252
canvas coordinate

transformations, 253

dividing a line into thirds and
folding, 247

dividing-into-thirds step, 245–246
HTML5 path-drawing facilities, 245
labeling at fold, half step, 251
labeling critical points, 249
littleguy function, 249–250
built-in Math methods, 245
rotatefish function, 253
sink center preparation, 252
triangle function, 248
triangleM function, 245, 247, 248
variables, 250

steps array
definition, 235
donext function, 235–237
goback function, 235, 237
init function, 235
nextstep, 236
onLoad attribute, 235
origamifish.html, 234–235

talking fish, 223–224, 232
unfolded fold line, 226
user interface, 238
utility functions

calculation, 243–245
display, 240, 242–243

video presentation and removal, 254
origamifish.html application, 224, 288
Oval constructor function, 31
Overcheck method, 42

P
Parallel structures, 149
piecesx value, 304
playsink function, 254
playtalk function, 254

Index

424

Point slope, 244
Popping the stack, 11
Precontent array, 180
Proportion, 245
Pythagorean theorem, 239

Q
Quiz application

API (see Google Maps API, map portal)
code, 188–200
content outline, 168
distances and tolerances, 181
functions, 188
hint button, 169, 172, 186
HTML5 markup and

positioning, 183–184, 186
image-and-audio combination, 170
mapmediaquiz.html file, 168
mediaquizcontent.js file, 168
opening screen, 168
project content, 179–180
project history and critical

requirements, 175
regex, 182
testing and uploading, 201
video, audio, and image files, 167
zooming out, 170–172

Quiz game
countries/capitals (see Countries/

capitals quiz game)

R
Rect constructor function, 30
Red-green-blue-alpha (rgba), 142–143
Regular expressions (regex), 35, 182–183
Responsive design, 375

restore function, 346, 349–350
restorepreviousjigsaw function, 350–352
Reveal program

application
code, 392–403
functional relationships for, 391
sequence of events and

actions, 390–391
testing and uploading, 404

canvas elements, 386
finger touch, 377
mouse vs. touch, 390
natural attributes, 385
opening screen of, 376
width and height properties, 386

rotatefish function, 253

S
SATELLITE map, 178
setInterval function, 89–90
Set typography, 233
setupgame function, 341
setupjigsaw function, 347
Stack, 11
statesx and statesy arrays, 348
strokeStyle property, 9
strokeText method, 9
style.left value, 304
style.top value, 304

T
TERRAIN map, 177
THIS element, 13
toFixed method, 152
triangle function, 248

Index

425

U
User-defined objects, 27
US states game

application
functions, 353–354
project code, 355–373
testing and uploading, 374

critical requirements, 332–333
doingjigsaw variable, 349
educational game, 321
elements creation, 341–342
find the state button, 323
fullpage div, 351
image files

arrays, 340
Hawaii original symbol, 335
illinois, 337
inverted selection, 339
map image in pixlr, 334
navigator panel, 335
panel creation, 336
pixlr, 334
transparent background, 340
wand tool, 338

jigsaw puzzle
correct arrangement, 331–332
feedback, 330–331
pseudorandom processing, 329
restore last jigsaw in process, 330
save and close jigsaw, 330–331
setting up, 347–348
work in progress, 330

localStorage, 349–350
name the state, 327
opening screen, 321–322

response after correct answer, 328
response to correct answer, 325
response to incorrect choice, 324
restore function, 346, 349, 350
restore original/compress map, 327
restorepreviousjigsaw

function, 350–352
spreading out pieces, 346
spread out states, 326
statesx and statesy arrays, 346
user interface

body element, 342
checkname function, 345
ev parameter, 344
HTML markup, 342
onsubmit attribute, 345
pickstate function, 344
setupfindstate function, 343
setupidentifystate function, 344
String method, 344

V
videobounceE program, 93
Videomarkup, 35

W, X, Y
W3C website, 7
Web application, 380
Wolfram Alpha, 134–135
World Wide Web Consortium, 3

Z
zIndex, 96, 140, 347

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Building the HTML5 Logo: Drawing on Canvas with Scaling and Semantic Tags
	Introduction
	Project History and Critical Requirements
	HTML5, CSS, and JavaScript features
	Drawing Paths on Canvas
	Placing Text on Canvas and in the Body of a Document
	Coordinate Transformations
	Using the Range Input Element

	Building the Application and Making It Your Own
	Testing and Uploading the Application
	Summary

	Chapter 2: Family Collage: Manipulating Programmer-Defined Objects on a Canvas
	Introduction
	Critical Requirements
	Autoplay Policy

	HTML5, CSS, and JavaScript Features
	JavaScript Objects
	External File of Specifications
	Rect
	Oval
	Picture
	Videoblock
	Heart
	Creating the Elements
	Drawing
	Checking for a Mouse Over Object

	User Inter face
	Saving the Canvas to an Image

	Building the Application and Making It Your Own
	Testing and Uploading the Application
	Summary

	Chapter 3: Bouncing Video: Animating and Masking HTML5 Video
	Introduction
	Project History and Critical Requirements
	HTML5, CSS, and JavaScript Features
	Definition of the Body and the Window Dimensions
	Animation
	Video Drawing Frames on Canvas or As a Movable Element
	Video Drawn on Canvas
	Movable Video Element

	Traveling Mask
	User Interface

	Building the Application and Making It Your Own
	Making the Application Your Own

	Testing and Uploading the Application
	Summary

	Chapter 4: Map Maker: Combining Google Maps and the Canvas
	Introduction
	Latitude and Longitude and Other Critical Requirements
	HTML5, CSS, and JavaScript Features
	The Google Maps API
	Canvas Graphics
	Cursor
	JavaScript Events
	Calculating Distance and Rounding Values for Display

	Building the Application and Making It Your Own
	Testing and Uploading the Application
	Summary

	Chapter 5: Map Portal: Using Google Maps to Access Your Media
	Introduction
	Project History and Critical Requirements
	HTML5, CSS, and JavaScript Features
	Google Maps API for Map Access and Event Handling
	Project Content in External File
	Distances and Tolerances
	Regular Expressions Used to Create the HTML
	Dynamic Creation of HTML5 Markup and Positioning
	Hint Button

	Building the Application and Making It Your Own
	The Quiz Application

	Testing and Uploading the Application
	Summary

	Chapter 6: Add to 15 Game
	Introduction
	General Requirements for a Game
	HTML5, CSS, and JavaScript
	Styling in CSS
	JavaScript Arrays
	Setting Up the Game
	Responding to a Player Move
	Generating the Computer Move

	Building the Application and Making It Your Own
	Testing and Uploading the Application
	Summary

	Chapter 7: Origami Directions: Using Math-Based Line Drawings, Photographs, and Videos
	Introduction
	Critical Requirements
	HTML5, CSS, JavaScript Features, and Mathematics
	Overall Mechanism for Steps
	User Interface
	Coordinate Values
	Utility Functions for Display
	Utility Functions for Calculation
	Step Line Drawing Functions
	Displaying a Photograph
	Presenting and Removing a Video

	Building the Application and Making It Your Own
	Testing and Uploading the Application
	Summary

	Chapter 8: Jigsaw Video
	Introduction
	Background and Critical Requirements
	HTML5, CSS, JavaScript, and Programming Features
	Creating the Base Picture
	Dynamically Created Elements
	Setting Up the Game
	Handling Player Actions
	Using Mouse Events

	Calculating If the Puzzle Is Complete
	Preparing, Positioning, and Playing the Video and Making It Hidden or Visible

	Building the Application and Making It Your Own
	Testing and Uploading the Application
	Summary

	Chapter 9: US States Game: Building a Multiactivity Game
	Introduction
	Critical Requirements
	HTML5, CSS, JavaScript Features, Programming Techniques, and Image Processing
	Acquiring the Image Files for the Pieces and Determining Offsets
	Creating Elements Dynamically
	User Interface Overall
	User Interface for Asking the Player to Click a State
	User Interface for Asking the Player to Name a State
	Spreading Out the Pieces
	Setting Up the Jigsaw Puzzle
	Saving and Recreating the State of the Jigsaw Game and Restoring the Original Map

	Building the Application and Making It Your Own
	Testing and Uploading the Application
	Summary

	Chapter 10: Responsive Design and Accessibility
	Introduction
	Critical Requirements
	Screen Size and Dimension
	Touch
	Screen Reader and Tabs

	HTML, CSS, and JavaScript Features
	Meta Tags
	HTML and CSS Use of Percentages and Auto
	CSS @media
	The HTML alt Attribute and Semantic Elements
	HTML tabIndex
	JavaScript Use of Width and Height Properties
	Creating Elements Dynamically
	Choosing From List
	Mouse Events, Touch Events, and Key Events

	Building the Reveal Application and Making It Your Own
	Testing and Uploading the Reveal Application
	Building the Countries/Capitals Quiz and Making It Your Own

	Testing and Uploading the Countries/Capitals Quiz Application
	Testing and Uploading the Jigsaw Turning to Video Application
	Summary

	Index

